• Title/Summary/Keyword: Compensation by prediction error

Search Result 42, Processing Time 0.023 seconds

Distance Error Compensation of Internet-based Robot System Using Position Prediction Simulator (위치 예측 시뮬레이터를 이용한 인터넷 로봇 시스템의 거리 오차 보상)

  • 이강희;이연백;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.108-115
    • /
    • 2003
  • This paper is concerned with the development of Internet-based robot system controlled on the remote site via the Internet. In order to draw the public attention into this exciting system, we built the simple system by which a robot is moved in response to answer for the given OX quizzes. As the primary research fer Internet-based robot control, this study focuses on the development of user-friendly interface by which a beginner achieves information for a robot on the remote site from the 3D virtual simulator and the real camera image. for the compensation of Internet time delay, position prediction simulator is implemented in the user interface.

Phase error compensation for three-dimensional shape measurement based on a phase-shifting method (위상천이법을 이용한 삼차원 형상측정에서 위상오차 보정)

  • Park, Yoon-Chang;Ahn, Seong-Joon;Kang, Moon-Ho;Kwon, Young-Chul;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3023-3030
    • /
    • 2009
  • In this paper, a prediction and compensation method for the error in the phase measured by using the proportionality between two wavelengths in the TW-PMP (Two-wavelength Phase Measuring Profilometry) is proposed and experimental results are shown to verify the usefulness of the proposed method. For sample object, firstly, a phase-shifting with a quite large number of steps is adopted in measurement, compared with the conventional phase-shifting method, secondly, a 3-3 step phase-shifting method is used to measure the same object which is applied to high-speed 3D shape measurement, and then, measured results from these two phase-shifting methods are compared to calculate measurement noises. From the experimental results applying the proposed compensation method to the measured beat phase and absolute phase, it has proven that noises are decreased by 90% and 17.2% for each case.

Development of a Predictive Model forOccupational Disability Grades Using Workers'Compensation Insurance Data (산재보험 빅데이터를 활용한 장해등급 예측 모델 개발)

  • Choi, Keunho;Kim, Min Jeong;Lee, Jeonghwa
    • The Journal of Information Systems
    • /
    • v.33 no.3
    • /
    • pp.187-205
    • /
    • 2024
  • Purpose A prediction model for occupational injuries can support more proactive, efficient, and effective policy-making. This study aims to develop a model that predicts the severity of occupational injuries, classified into 15 disability grades in South Korea, using machine learning techniques applied to COMWEL data. The primary goal is to improve prediction accuracy, offering an advanced tool for early intervention and evidence-based policy implementation. Design/methodology/approach The data analyzed in this study consists of 290,157 administrative records of occupational injury cases collected between 2018 and 2020 by the Korea Workers' Compensation & Welfare Service, based on the 'Workers' Compensation Insurance Application Form' submitted for occupational injury treatment. Four machine learning models - Decision Tree, DNN, XGBoost, and LightGBM - were developed and their performances compared to identify the optimal model. Additionally, the Permutation Feature Importance (PFI) method was used to assess the relative contribution of each variable to the model's performance, helping to identify key variables. Findings The DNN algorithm achieved the lowest Mean Absolute Error (MAE) of 0.7276. Key variables for predicting disability grades included the severity index, primary disease code, primary disease site, age at the time of the injury, and industry type. These findings highlight the importance of early policy intervention and emphasize the role of both medical and socioeconomic factors in model predictions. The academic and policy implications of these results were also discussed.

Prediction of Relative Deformation between Cutting Tool and Workpiece by Cutting Force [$1^{st}$ paper] (절삭력에 의한 공구와 공작물의 상대적 변형량 예측 [1])

  • Hwang, Young-Kug;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.86-93
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. Thermal and weight deformations can be measured at various positions of the machine tool and stored in the compensation registers of the CNC unit and compensated the errors during machining. However, the cutting force induced errors are difficult to compensate because estimation of cutting forces are difficult. To minimize the error induced by cutting forces, it is important to improve the machining accuracy. This paper presents the pre-calculated method of form error induced by cutting forces. In order to estimate cutting forces, Isakov method is used and the method is verified by comparing with the experimental results. In order to this, a cylindrical-outer-diameter turning experiments are carried out according to cutting conditions.

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

Theoretical Approach of Development of Tracking Module for ARPA system on Board Warships

  • Jeong, Tae-Gweon;Pan, Bao-Feng;Njonjo, Anne Wanjiru
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.53-54
    • /
    • 2015
  • The maritime industry is expanding at an alarming rate and as such there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking system described herein comprises determining existing states of own ship, state prediction and state compensation caused by random noise. The purpose of this paper is to analyze the process of tracking and develop a tracking algorithm by using ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise or irregular motion for use in a warship. The algorithm involves initializing the input parameters of position, velocity and course. The actual positions are then computed for each time interval. In addition, a weighted difference of the observed and predicted position at the nth observation is added to the predicted position to obtain the smoothed position. This estimation is subsequently employed to determine the predicted position at (n+1). The smoothed values, predicted values and the observed values are used to compute the twice distance root mean square (2drms) error as a measure of accuracy of the tracking module.

  • PDF

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

Reversible Image Watermarking with Differential Histogram Shifting and Error Prediction Compensation (차이값 히스토그램 쉬프팅과 오류 예측 보정을 이용한 가역 영상 워터마킹)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun;Kim, Byeong-Man;Kim, Kyung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.417-429
    • /
    • 2010
  • Reversible watermarking inserts watermark into digital media in such a way that visual transparency is preserved and then enables to restore the original media from the marked one without any loss of media quality. This watermarking can be applied to quality-sensitive imaging such as medical imaging, military imaging, remote-sensing imaging, and precious artwork, where the original media should be preserved during image processing and analysis. In this paper, a reversible image watermarking technique that embeds message bits by modifying the differential histogram of adjacent pixels is presented. In order to satisfy both high embedding capacity and visual quality, the proposed technique exploits the fact that adjacent pixels in the image have highly spatial correlation. Also, we prevent overflow/underflow problem and salt-and-pepper artifacts by employing a predicted error compensation scheme. Through experiments using various test images, we prove that the presented technique provides perfect reversibility and high embedding capacity, while maintaining the induced-distortion low.

Intra Prediction Offset Compensation for Improving Video Coding Efficiency (영상 부호화 효율 향상을 위한 화면내 예측 오프셋 보상)

  • Lim, Sung-Chang;Lee, Ha-Hyun;Choi, Hae-Chul;Jeong, Se-Yoon;Kim, Jong-Ho;Choi, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.749-768
    • /
    • 2009
  • In this paper, an intra prediction offset compensation method is proposed to improve intra prediction in H.264/AVC. In H.264/AVC, intra prediction based on various directions improves the coding efficiency by removing spatial correlation between neighboring blocks. In details, neighboring pixels in reconstructed block can be used as intra reference block for the current block to be coded when intra prediction method is used. In order to reduce further the prediction error of the intra reference block, the proposed method introduces an intra prediction offset which is determined in the sense of the rate-distortion optimization and is added to the conventional intra prediction block. Besides the intra prediction offset compensation, the coefficient thresholding method which is used for inter coding in JM 11.0, is used for chroma component in intra block, which leads the improvement of the luma coding efficiency of the proposed method. In experiments, we show that the proposed method achieves average 2.45% in High Profile condition and maximum 4.41% of bitrate reduction relative to JM 11.0.