• Title/Summary/Keyword: Compensation by prediction error

Search Result 42, Processing Time 0.027 seconds

Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation (HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation

  • Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.

Teleoperation by using Smith prediction and Grey prediction with a Time-delay in a Non-visible Environment (스미스 예측기와 그레이 예측 방법을 적용한 시간 지연이 있는 비 가시 환경에서의 원격로봇제어)

  • Jung, JaeHun;Kim, DeokSu;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.277-284
    • /
    • 2016
  • A new prediction scheme has been proposed for the robust teleoperation in a non-visible environment. The positioning error caused by the time delay in the non-visible environment has been compensated for by the Smith predictor and the sensory data have been estimated by the Grey model. The Smith predictor is effective for the compensation of the positioning error caused by the time delay with a precise system model. Therefore the dynamic model of a mobile robot has been used in this research. To minimize the unstable and erroneous states caused by the time delay, the estimated sensor data have been sent to the operator. Through simulations, the possibility of compensating the errors caused by the time delay has been verified using the Smith predictor. Also the estimation reliability of the measurement data has been demonstrated. Robust teleoperations in a non-visible environment have been performed with a mobile robot to avoid the obstacles effective to go to the target position by the proposed prediction scheme which combines the Smith predictor and the Grey model. Even though the human operator is involved in the teleoperation loop, the compensation effects have been clearly demonstrated.

A Signal-Level Prediction Scheme for Rain-Attenuation Compensation in Satellite Communication Linkes (위성 통신 링크에서 강우 감쇠 보상을 위한 신호 레벨 예측기법)

  • 임광재;황정환;김수영;이수인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.782-793
    • /
    • 2000
  • This paper presents a simple dynamical prediction scheme of the signal level which is attenuated and varied due to rain fading in satellite communication links using above 10GHz frequency bands. The proposed prediction scheme has four functional blocks for discrete-time low-pass filtering, slope-based prediction, mean-error correction and hybrid fixed/variable prediction margin allocation. Through simulations using Ka-band attenuation data obtained from the data measured over Ku-band by frequency-scaling, it is shown that the slope-based prediction with the mean-error correction has as small standard deviation of prediction error as below 1 dB, and that the error is about 1.5 to 2.5 times as small as that without the mean-error correction. The hybrid prediction margin allocation requires smaller average margin than those of both fixed and variable methods.

  • PDF

A Study on Compensation for tool deformation machining errors in micro end-milling (마이크로 엔드밀링에서 공구변형 가공오차 보상에 관한 연구)

  • Jong-In Son;Byeong-Uk Song
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.24-32
    • /
    • 2023
  • In this study, we introduce research aimed at minimizing machining errors without compromising productivity by compensating for the machining errors caused by tool deformation. Our approach experimentally establishes the direct correlation between cutting depth and machining error, and creates predictive models using mathematical functions. This method allows for the prediction of compensated cutting depths to obtain the desired cutting profiles, thereby maximizing the compensation of machining errors in the cutting process.

A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill (측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구)

  • Jeon, Du-Seong;Seo, Tae-Il;Yoon, Gil-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

A Study on the Virtual Machining CAM System : Prediction and Experimental Verification of Machined Surface (실 가공형 CAM 시스템 연구: 가공형상의 예측 및 실험 검증)

  • 김형우;서석환;신창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.961-964
    • /
    • 1995
  • For geometric accuracy in the net shape machining, the problem of tool deflection should be resolved in some fashion. In particular, this is crucial in finish cut operation where slim tools are used. The purpose of this paper is to verify the validity and effectiveness of the prediction model of the machined surface. Experimental results are presented for the cut of steel material with HSS endmill of diameter 6mm on machining center. The results shows that 1) the machining error due totool deflection is serious even in the low cutting load, 2) by using the mechanistic simulation model with experimental coefficients, the machining error was predicted with maximum prediction error of 10% which was significantly reduced to the desired level by the path modification method.

  • PDF

Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting (러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • Recently, the TS fuzzy models that include the linear equations in the consequent part are widely used for time series forecasting, and the prediction performance of them is somewhat dependent on the characteristics of time series such as stationariness. Thus, a new prediction method is suggested in this paper which is especially effective to nonstationary time series prediction. First, data preprocessing is introduced to extract the patterns and regularities of time series well, and then multiple model TS fuzzy predictors are constructed. Next, an appropriate model is chosen for each input data by an adaptive model selection mechanism based on rough sets, and the prediction is going. Finally, the error compensation procedure is added to improve the performance by decreasing the prediction error. Computer simulations are performed on typical cases to verify the effectiveness of the proposed method. It may be very useful for the prediction of time series with uncertainty and/or nonstationariness because it handles and reflects better the characteristics of data.

Context-based Predictive Coding Scheme for Lossless Image Compression (무손실 영상 압축을 위한 컨텍스트 기반 적응적 예측 부호화 방법)

  • Kim, Jongho;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.183-189
    • /
    • 2013
  • This paper proposes a novel lossless image compression scheme composed of direction-adaptive prediction and context-based entropy coding. In the prediction stage, we analyze the directional property with respect to the current coding pixel and select an appropriate prediction pixel. In order to further reduce the prediction error, we propose a prediction error compensation technique based on the context model defined by the activities and directional properties of neighboring pixels. The proposed scheme applies a context-based Golomb-Rice coding as the entropy coding since the coding efficiency can be improved by using the conditional entropy from the viewpoint of the information theory. Experimental results indicate that the proposed lossless image compression scheme outperforms the low complexity and high efficient JPEG-LS in terms of the coding efficiency by 1.3% on average for various test images, specifically for the images with a remarkable direction the proposed scheme shows better results.

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.