• 제목/요약/키워드: Compensation by prediction error

검색결과 42건 처리시간 0.023초

HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계 (Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation

  • Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.327-332
    • /
    • 2009
  • This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.

스미스 예측기와 그레이 예측 방법을 적용한 시간 지연이 있는 비 가시 환경에서의 원격로봇제어 (Teleoperation by using Smith prediction and Grey prediction with a Time-delay in a Non-visible Environment)

  • 정재훈;김덕수;이장명
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.277-284
    • /
    • 2016
  • A new prediction scheme has been proposed for the robust teleoperation in a non-visible environment. The positioning error caused by the time delay in the non-visible environment has been compensated for by the Smith predictor and the sensory data have been estimated by the Grey model. The Smith predictor is effective for the compensation of the positioning error caused by the time delay with a precise system model. Therefore the dynamic model of a mobile robot has been used in this research. To minimize the unstable and erroneous states caused by the time delay, the estimated sensor data have been sent to the operator. Through simulations, the possibility of compensating the errors caused by the time delay has been verified using the Smith predictor. Also the estimation reliability of the measurement data has been demonstrated. Robust teleoperations in a non-visible environment have been performed with a mobile robot to avoid the obstacles effective to go to the target position by the proposed prediction scheme which combines the Smith predictor and the Grey model. Even though the human operator is involved in the teleoperation loop, the compensation effects have been clearly demonstrated.

위성 통신 링크에서 강우 감쇠 보상을 위한 신호 레벨 예측기법 (A Signal-Level Prediction Scheme for Rain-Attenuation Compensation in Satellite Communication Linkes)

  • 임광재;황정환;김수영;이수인
    • 한국통신학회논문지
    • /
    • 제25권6A호
    • /
    • pp.782-793
    • /
    • 2000
  • 본 논문은 10GHz이상의 주파수 대역을 사용하는 위성 통신 링크에서 강우에 의해 감쇠된 신호 레벨을 동적으로 예측하기 위한 비교적 간단한 예측 기법을 제시한다. 예측 기법은 이산시간 저역 통과 필터링, 기울기에 근거한 예측, 평균 오차 보정, 고정 및 가변 혼합 예측 여유 할당의 4가지 기능 블록을 갖는다. Ku 대역의 측정 데이터로부터 주파수 스케일링에 의해 얻어진 Ka 대역 강우 감쇠 데이터를 이용하여 시뮬레이션을 수행하였다. 평균 오차 보정을 갖는 기울기 예측 기법은 1dB 이하의 표준 편차를 가지며, 평균 오차 보정에 의해 약 1.5~2.5 배의 예측 오차 감소를 보인다. 요구되는 평균 여유 면에서, 혼합 예측 여유 할당은 고정 여유 방법과 가변 여유 방법에 비해 더 적은 평균 여유를 요구한다.

  • PDF

마이크로 엔드밀링에서 공구변형 가공오차 보상에 관한 연구 (A Study on Compensation for tool deformation machining errors in micro end-milling)

  • 손종인;송병욱
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.24-32
    • /
    • 2023
  • In this study, we introduce research aimed at minimizing machining errors without compromising productivity by compensating for the machining errors caused by tool deformation. Our approach experimentally establishes the direct correlation between cutting depth and machining error, and creates predictive models using mathematical functions. This method allows for the prediction of compensated cutting depths to obtain the desired cutting profiles, thereby maximizing the compensation of machining errors in the cutting process.

측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구 (A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill)

  • 전두성;서태일;윤길상
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

실 가공형 CAM 시스템 연구: 가공형상의 예측 및 실험 검증 (A Study on the Virtual Machining CAM System : Prediction and Experimental Verification of Machined Surface)

  • 김형우;서석환;신창호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.961-964
    • /
    • 1995
  • For geometric accuracy in the net shape machining, the problem of tool deflection should be resolved in some fashion. In particular, this is crucial in finish cut operation where slim tools are used. The purpose of this paper is to verify the validity and effectiveness of the prediction model of the machined surface. Experimental results are presented for the cut of steel material with HSS endmill of diameter 6mm on machining center. The results shows that 1) the machining error due totool deflection is serious even in the low cutting load, 2) by using the mechanistic simulation model with experimental coefficients, the machining error was predicted with maximum prediction error of 10% which was significantly reduced to the desired level by the path modification method.

  • PDF

러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용 (Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting)

  • 방영근;이철희
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.25-33
    • /
    • 2009
  • 최근 시계열 예측에 결론부에 선형식을 갖는 TS 퍼지 모델이 많이 이용되고 있는데, 이의 예측 성능은 정상성과 같은 데이터의 특성과 밀접한 관련이 있다. 그러므로 본 논문에서는 특히 비정상 시계열 예측에 매우 효과적인 새로운 예측 기법을 제안하였다. 시계열의 패턴이나 규칙성을 잘 끌어내기 위한 데이터 전처리 과정을 도입하고 다중 모델 TS 퍼지 예측기를 구성한 뒤, 러프집합을 이용한 적응 모델 선택 기법에 의해 입력 데이터의 특성에 따라 가변적으로 적합한 예측 모델을 선택하여 시계열 예측이 수행되도록 하였다. 마지막으로 예측 오차를 감소시키기 위하여 오차 보정 메커니즘을 추가함으로써 예측 성능을 더욱 향상시켰다. 시뮬레이션을 통해 제안된 기법의 성능을 검증하였다. 제안된 기법은 예측 모델 구현과 예측 수행 과정에서 시계열 데이터의 특성들을 잘 반영할 수 있으므로 불확실성과 비정상성을 갖는 시계열의 예측에 매우 효과적으로 이용될 수 있을 것이다.

무손실 영상 압축을 위한 컨텍스트 기반 적응적 예측 부호화 방법 (Context-based Predictive Coding Scheme for Lossless Image Compression)

  • 김종호;유훈
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.183-189
    • /
    • 2013
  • 본 논문에서는 영상의 방향성에 따른 적응적 예측 기법과 컨텍스트 기반 엔트로피 부호화 방법을 주요 구성요소로 한 무손실 영상 압축 방법을 제안한다. 적응적 예측 기법에서는 부호화 픽셀을 중심으로 각 방향에 대한 상관도를 분석하고, 이를 이용하여 적절한 예측 픽셀을 선택한다. 또한 예측 에러를 더욱 줄이기 위하여 주변 픽셀의 복잡도 및 방향성을 이용한 컨텍스트 모델 기반 예측 에러 보정 과정을 수행한다. 정보이론의 관점에서 조건부 엔트로피에 의해 부호화 효율이 더욱 향상된다는 점을 이용하여 본 논문에서는 엔트로피 부호화 방식으로 컨텍스트 기반 Golomb-Rice 부호화를 적용한다. 실험결과 제안한 무손실 영상 압축 방식은 다양한 영상에 대해서 기존의 저 복잡도 및 고효율의 JPEG-LS에 비해 평균 1.3%의 압축효율 향상을 나타내었고, 특히 방향성이 뚜렷한 영상에 대해서 성능이 좋음을 알 수 있다.

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • 한국통신학회논문지
    • /
    • 제28권4C호
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.