• 제목/요약/키워드: Compensation Table

검색결과 106건 처리시간 0.021초

5축CNC공작기계의 회전테이블 오차 측정에 관한 연구 (A study on the measurement of rotary table error with 5-axis CNC machine)

  • 서석환;정세용;이응석
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.84-92
    • /
    • 1997
  • The purpose of this study is to develop a geometric error model and path compensation algorithm for rotating axes of the 5-axis machine tools, by a method to calibrate a rotary table using one master ball and three LVDTs. It was developed a new methodology to measure 3 translation errors of the rotary table and with a compensation procedure for setup errors of the master ball. The method is experimentally verified using a ball-table and on-machine inspection method. The results showed that the geometric error models with the path compensation strategy can be practically used as a means for improving the accuracy of the machine tools with rotary table.

  • PDF

맵핑 테이블을 이용한 전역 밝기 보상 (Global Intensity Compensation using Mapping Table)

  • 오상진;이지홍;고윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.15-17
    • /
    • 2006
  • This paper presents a new global intensity compensation method for extracting moving object in a visual surveillance system by compensating time variant intensity changes of background region. The method that compensates a little changes of intensity due to time variant illumination change and automatic gain control of camera is called global intensity compensation. The proposed method expresses global intensity change with a mapping table to describe complex form of intensity change while the previous method models this global intensity change with a simple function as a straight line. The proposed method builds the mapping table by calculating the cross histogram between two images and then by selecting an initial point for generating the mapping table by using Hough transform applied to the cross histogram image. Then starting from the initial point, the mapping table is generated according to the proposed algorithm based on the assumption that reflects the characteristic of global intensity change. Experimental results show that the proposed method makes the compensation error much smaller than the previous GIC method

  • PDF

Compensation techniques for experimental errors in real-time hybrid simulation using shake tables

  • Nakata, Narutoshi;Stehman, Matthew
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1055-1079
    • /
    • 2014
  • Substructure shake table testing is a class of real-time hybrid simulation (RTHS). It combines shake table tests of substructures with real-time computational simulation of the remaining part of the structure to assess dynamic response of the entire structure. Unlike in the conventional hybrid simulation, substructure shake table testing imposes acceleration compatibilities at substructure boundaries. However, acceleration tracking of shake tables is extremely challenging, and it is not possible to produce perfect acceleration tracking without time delay. If responses of the experimental substructure have high correlation with ground accelerations, response errors are inevitably induced by the erroneous input acceleration. Feeding the erroneous responses into the RTHS procedure will deteriorate the simulation results. This study presents a set of techniques to enable reliable substructure shake table testing. The developed techniques include compensation techniques for errors induced by imperfect input acceleration of shake tables, model-based actuator delay compensation with state observer, and force correction to eliminate process and measurement noises. These techniques are experimentally investigated through RTHS using a uni-axial shake table and three-story steel frame structure at the Johns Hopkins University. The simulation results showed that substructure shake table testing with the developed compensation techniques provides an accurate and reliable means to simulate the dynamic responses of the entire structure under earthquake excitations.

틸팅 인덱스 테이블의 성능 향상을 위한 레이저 측정 실험에 관한 연구 (A Study on the Laser Measurement Experiment for Performance Advancement of Tilting Index Table)

  • 김광선;이태호;이춘만
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.26-30
    • /
    • 2011
  • Currently, many researches are carried out about tilting index table, which is one of the main component of 5-axis machine tool. The performance of the tilting index table is associated the rotational accuracy which is very important factor for high precision machining because it have an effect on machining error. In this paper, a tilting index table is developed, and the rotational accuracy of the tilting index table using a laser measurement equipment is measured. In addition, a correction value is obtained from the measured value through compensation, and the correction value is used to improve the accuracy of the table. Comparative analysis is carried out for the accuracy of the table before and after compensation. This paper can be used by a reference for performance and reliability advancement of tilting index table.

XY 테이블의 퍼지 데드존 보상 (Deadzone compensation of a XY table using fuzzy logic)

  • 장준오
    • 전자공학회논문지SC
    • /
    • 제41권2호
    • /
    • pp.17-28
    • /
    • 2004
  • 퍼지논리를 이용한 XY 테이블의 데드존 보상기법을 제안한다. 퍼지논리 함수의 분류특성은 다양한 영역을 가진 데드존에 의해 유발되는 오차를 제거하기 위한 보상기 설계를 가능케 한다. 데드존 보상이 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 퍼지논리 파라미터 동조알고리듬과 안정도 증명을 제시한다. 퍼지논리 데드존 보상기를 위치 테이블에 실험함으로써 데드존의 해로운 영향을 줄이는 효과를 보여준다.

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

Novel LUT Measurement Method for Response Time Compensation

  • Kim, Tae-Sung;Park, Bong-Im
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.331-334
    • /
    • 2004
  • A new measurement scheme is proposed to generate an optimized boost table for video rate LCD response time compensation. This method, which closely follows basic theory, enables up to a 90% reduction in the lookup table creation time compared to conventional methods. Furthermore, while conventional approaches require all measurements to be repeated in order to load the entire LUT whenever key parameters such as refresh rate or boost intensity are modified, the method proposed in this paper allows the new table to be calculated by utilizing saved waveform data without the need for any repeated measurements.

  • PDF

능동제어모세관을 이용한 유정압테이블의 운동정도 향상 (Improvement of Motion Accuracy Using Active Controlled Capillary in Hydrostatic Table)

  • Park, C.H.;Song, Y.C.;Lee, H.S.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.114-120
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clearance of table is controlled corresponding to the amount of eror with the actively controlled variable capillary, named as ACC. In previous paper, through the basic test, it was confirmed that by the use of ACC, the error motion within 2.7$\mu$ m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the frequency bandwidth of 5.5Hz, structurally. In this paper, we performed practical compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy, iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error, the linear and angular motion error are improved upto 0.25$\mu$ m and 0.4arcsec, which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

  • PDF

X-Y 테이블의 마찰력 특성 및 보상 (The characteristics and compensation of friction of X-Y table)

  • 박은찬;임혁;최종호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.261-261
    • /
    • 2000
  • This paper analyzes the characteristics of pre-sliding friction of an X-Y table of CNC machining center at velocity reversal, and presents a simple and effective method of friction compensation based on this characteristics. At velocity reversal, a large position tracking error occurs because of the discontinuous change of friction. The relationship between the occurrence time of maximum position tracking error and the acceleration at zero velocity is analyzed by using the spring-like friction model. Furthermore, the experimental observation verifies this relation. From this, the state transition tine from pre-sliding regime into sliding regime can be predicted. Using the predicted transition time, the friction can be effectively compensated and table experimental results show its effectiveness.

  • PDF

The Compensation of Machine Vision Image Distortion

  • Chung, Yi-Chan;Hsu, Yau-Wen;Lin, Yu-Tang;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • 제5권1호
    • /
    • pp.68-84
    • /
    • 2004
  • The measured values of a same object should remain constant regardless of the object's position in the image. In other words, its measured values should not vary as its position in the image changes. However, lens' image distortion, heterogeneous light source, varied angle between the measuring apparatus and the object, and different surroundings where the testing is set up will all cause variation in the measurement of the object when the object's position in the image changes. This research attempts to compensate the machine vision image distortion caused by the object's position in the image by developing the compensation table. The compensation is accomplished by facilitating users to obtain the correcting object and serves the objective of improving the precision of measurement.