• 제목/요약/키워드: Compensation Of Error Rate

Search Result 167, Processing Time 0.022 seconds

Compensation for Nonlinear Distortion in OFDM Systems Using a Digital Predistorter Based on the Canonical PWL Model (Canonical PWL 모델 기반의 디지털 사전왜곡기를 이용한 OFDM 시스템의 비선형 왜곡 보상)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin;Jung, Jae-Ho;Lee, Kwang-Chun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Orthogonal frequency division multiplexing (OFDM) is an attractive technique for achieving high-bit-rate wireless data transmission. However, multicarrier systems such as OFDM show great sensitivity to nonlinear distortion. The OFDM structure requires a summation of a large number of subcarriers for multicarrier modulation, and as a result of this summation large signal envelope fluctuations occur. These fluctuations make OFDM systems to be very sensitive to nonlinear distortion introduced by the high power amplifier (HPA) at the transmitter. In this paper, we propose a canonical piecewise-linear (CPWL) model based digital predistorter to compensate for nonlinear distortion introduced by the high peak-to-average power ratio (PAPR) and the HPA in OFDM systems. The performance of the new predistortion scheme for OFDM systems is evaluated in terms of total degradation (TD) and bit error rate (BER). The simulation results demonstrated that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinear distortion introduced by the HPA.

Improved MAC Protocol Synchronization Algorithm using Compensating value in Wireless Mesh Networks (무선메쉬네트워크환경에서 보정계수를 이용한 MAC프로토콜 동기화 개선 알고리즘)

  • Yun, Sang-Man;Lee, Soon-Sik;Lee, Sang-Wook;Jeon, Seong-Geun;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2218-2226
    • /
    • 2009
  • TDMA based MAC protocol supporting wireless mesh network has many advantage rather than 802.11 DCF/EDCA protocol based on packet. But TDMA based MAC protocol require new synchronization method because of mobile point oscillator's difference, and distributed environments. This thesis propose synchronization method for TDMA based MAC protocol. It divides MP(Mobile Points) states into 4 types. If MP is in sync mode, it schedules TDMA local start time in time skew interval using beacon. It proposes compensation algorithms to compensate time skew caused by clock drift. This proposal show that general time error and clock drift rate value reduced and get synchronized result.

Ranging Performance Evaluation of Relative Frequency Offset Compensation in High Rate UWB (고속 UWB의 상대주파수 차이 보상에 의한 거리추정 성능평가)

  • Nam, Yoon-Suk;Lim, Jae-Geol;Jang, Ik-Hyeon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.76-85
    • /
    • 2009
  • UWB signal with high resolution capability can be used to estimate ranging and positioning in wireless personal area network. The node works on its local clock and the frequency differences of nodes have serious affects on ranging algorithms estimating locations of mobile nodes. The low rate UWB, IEEE802.15.4a, describes asynchronous two way ranging methods such as TWR and SDS-TWR working without any additional network synchronization, but the algorithms can not eliminate the effect of clock frequency differences. Therefore, the mechanisms to characterize the crystal difference is essential in typical UWB PHY implementations. In high rate UWB, characterizing of crystal offset with tracking loop is not required. But, detection of the clock frequency offset between the local clock and remote clock can be performed if there is little noise induced jitter. In this paper, we complete related ranging equations of high rate UWB based on TWR with relative frequency offset, and analyze a residual error in the ideal equations. We also evaluate the performance of the relative frequency offset algorithm by simulation and analyze the ranging errors according to the number of TWR to compensate coarse clock resolution. The results show that the relative frequency offset compensation and many times of TWR enhance the performance to converge to a limited ranging errors even with coarse clock resolutions.

Doppler Radar System for Long Range Detection of Respiration and Heart Rate (원거리에서 측정 가능한 호흡 및 심박 수 측정을 위한 도플러 레이더 시스템)

  • Lee, Jee-Hoon;Kim, Ki-Beom;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.418-425
    • /
    • 2014
  • This paper presents a Ku-Band Doppler Radar System to measure respiration and heart rate. It was measured by using simultaneous radar and ECG(Electrocardiogram). Arctangent demodulation without dc offset compensation can be applied to transmitted I/Q(In-phase & Quadrature-phase) signal in order to improve the RMSE(Root Mean Square Error) about 50 %. The power leaked to receiving antenna from the transmitting antenna is always generated because of continuously opening the transceiver of CW(Continuous Wave) Doppler radar. As the output power increase, leakage power has an effect on the SNR(Signal-to-Noise Ratio) of the system. Therefore, in this paper, leakage cancellation technique that adds the signal having the opposite phase of the leakage power to the leakage power was implemented in order to minimize the decline of receiver sensitivity. By applying the leakage cancellation techniques described above, it is possible to measure the heart rate and respiration of the human at a distance of up to 35 m. the heart rate of the measured data at a distance of 35 m accords with the heart rate extracted from the ECG data.

A study on the design exploration of Optical Image Stabilization (OIS) for Smart phone (스마트폰을 위한 광학식 손떨림 보정 설계 탐색에 관한 연구)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1603-1615
    • /
    • 2018
  • In order to achieve the low complexity and area, power in the design of Optical Image Stabilization (OIS) suitable for the smart phone, this paper presents the following design explorations, such as; optimization of gyroscope sampling rate, simple and accurate gyroscope filters, and reduced operating frequency of motion compensation, optimized bit width in ADC and DAC, evaluation of noise effects due to PWM driving. In experiments of gyroscope sampling frequencies, it is found that error values are unvaried in the frequency above 5KHz. The gyroscope filter is efficiently designed by combining the Fuzzy algorithm, to illustrate the reasonable compensation for the angle and phase errors. Further, in the PWM design, the power consumption of 2MHz driving is shown to decrease up to 50% with respect to the linear driving, and the imaging noises are reduced in the driving frequency above 2MHz driving frequency. The operating frequency could be reduced to 5KHz in controller and 10KHz in driver, respectively, in the motion compensation. For ADC and DAC, the optimized exploration experiments verify the minimum bit width of 11bits in ADC as well as 10bits in DAC without the performance degradation.

Performance of Carrier Frequency Offset Compensation using CAZAC Code in Time and Spatial Variant Underwater Acoustic Channel (시·공간 변동 수중음향 채널에서 CAZAC 코드를 적용한 반송파 주파수 옵셋 보상 기법의 성능평가)

  • Park, Jihyun;Bae, Minja;Kim, Jongju;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1229-1236
    • /
    • 2016
  • In underwater acoustic multipath channel, a performance of underwater acoustic (UWA) communication systems is affected by dynamic variation of boundary and high temporal and spatial variability of the channel conditions. Time and spatial variations of UWA channel induce a carrier frequency offset (CFO) since a phase and a frequency of received signal mismatch with a transmitting signal. Therefore, a performance of a phase shift keying underwater acoustic communication system is degraded. In this study, we have analyzed a performance of CFO estimation and compensation using a phase code in time and spatial variation channel. A constant amplitude zero autocorrelation (CAZAC) signal is applied as a phase code signal and its performance is evaluated in water tank. The bit error rate of a quadrature phase shift keying (QPSK) system with a phase code is improved about 4 to 10 times better than that without a phase code.

A Basic Study on Development of a Tracking Module for ARPA system for Use on High Dynamic Warships

  • Njonjo, Anne Wanjiru;Pan, Bao-Feng;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.2
    • /
    • pp.83-87
    • /
    • 2016
  • The maritime industry is expanding at an alarming rate hence there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking module designed herein comprises determining existing states of high dynamic target warship, state prediction and state compensation due to random noise. This is achieved by first analyzing the process of tracking followed by design of a tracking algorithm that uses ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise. The algorithm involves initializing the state parameters which include position, velocity, acceleration and the course. This is then followed by state prediction at each time interval. A weighted difference of the observed and predicted state values at the $n^{th}$ observation is added to the predicted state to obtain the smoothed (filtered) state. This estimation is subsequently employed to determine the predicted state in the next radar scan. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from a pre-determined value of the damping parameter, ${\xi}$. The smoothed, predicted and the observed positions are used to compute the twice distance root mean square (2drms) error as a measure of the ability of the tracking module to manage the noise to acceptable levels.

A New Adaptive Kernel Estimation Method for Correntropy Equalizers (코렌트로피 이퀄라이져를 위한 새로운 커널 사이즈 적응 추정 방법)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.627-632
    • /
    • 2021
  • ITL (information-theoretic learning) has been applied successfully to adaptive signal processing and machine learning applications, but there are difficulties in deciding the kernel size, which has a great impact on the system performance. The correntropy algorithm, one of the ITL methods, has superior properties of impulsive-noise robustness and channel-distortion compensation. On the other hand, it is also sensitive to the kernel sizes that can lead to system instability. In this paper, considering the sensitivity of the kernel size cubed in the denominator of the cost function slope, a new adaptive kernel estimation method using the rate of change in error power in respect to the kernel size variation is proposed for the correntropy algorithm. In a distortion-compensation experiment for impulsive-noise and multipath-distorted channel, the performance of the proposed kernel-adjusted correntropy algorithm was examined. The proposed method shows a two times faster convergence speed than the conventional algorithm with a fixed kernel size. In addition, the proposed algorithm converged appropriately for kernel sizes ranging from 2.0 to 6.0. Hence, the proposed method has a wide acceptable margin of initial kernel sizes.

The Phase Estimation Algorithm of Arrival Time Difference in MIMO Underwater Sensor Communication (MIMO 수중 통신에서 도착시간 차이에 따른 보상 알고리즘)

  • Baek, Chang-uk;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1531-1538
    • /
    • 2015
  • In this paper, we proposed receiver structure based on an iterative turbo equalization to cope with phase difference between two sensors in MIMO underwater communication channel. In a space-time coded system, it is often assumed that there are no phase errors among the multiple transmitter and receiver chains. In this paper, we have studied the effect of the phase errors between different transmit sensors and different propagation paths in the environment of MIMO underwater communication system, and have shown through BER performance by computer simulations that the bit-error-rate performance can be severely degraded. A decision-directed estimation and compensation algorithm has been proposed to minimize their effects on the system performance. In this paper, we investigate the phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for underwater channel model to minimize their effects.

The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter (능동형 전자식 개인피폭선량계의 저에너지 X선 영역별 최적화를 위한 에너지보상 필터 두께에 대한 연구)

  • Kim, Jung-Su;Park, Youn-Hyun;Chae, Hyun-Sic
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.519-526
    • /
    • 2022
  • Electronic personal dosimeter (EPD) provide real time monitoring and a direct indication of the accumulated dose or dose rate in terms of personal dose. Most EPD do not perform well in low energy photon radiation fields present in medical radiation environments. It has poor responsibility and large error rate for low energy photon radiation of medical radiation environments. This study evaluated to optimal additional filtration for EPD using silicon PIN photodiode detector form 40 to 120 kVp range in medical radiation environments. From 40 to 80 kVp energy range, Al 0.2 mm and Sn 1.0 mm overlapped filtration showed good responsibility to dose rate and from 80 kVp to 120 kVp energy range, Al 0.2 mm and Sn 1.6 mm overlapped filtration showed good responsibility to dose rate.