• Title/Summary/Keyword: Compensation Circuit

Search Result 442, Processing Time 0.026 seconds

Development of W-band Transceiver Module using Manufactured MMIC (국내개발 MMIC칩을 적용한 W-Band 송수신모듈 개발)

  • Kim, Wan-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.233-237
    • /
    • 2017
  • The dual-channel receiver MMIC which is composed of LNA, Mixer, LO-amp and temperature compensation circuit is designed on a single chip. For the performance comparison, a FMCW radar transceiver module using commercial MMICs is also implemented. As a result, Multi-channel Transceiver using manufactured MMIC shows an improved performance such as noise figure and gain flatness compare to purchased MMIC.

Instantaneous Voltage Sag Corrector Controller Design of Power Line System (전력선 계통의 순시 전압 강하 제어기 설계)

  • Lee, Sang-Hoon;Hong, Hyun-Mun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.6-11
    • /
    • 2006
  • This paper describes the novel control techniques design of VSC(Voltage Sag Corrector) for the purpose of power line quality enhancement. A fast detecting technique of voltage sag is implemented through the detection of instantaneous value on synchronous rotating dq-reference frame. The first order digital filter is added in the detection algorithm to protect the insensitive characteristics against the noise. The relationship between the total detection time and cut-off frequency of the filter is described. The size of the capacitor bank used as the energy storage element is designed from the point of view of input/output energy with circuit analysis. Finally, the validity of the proposed scheme is proven through the simulated results.

A Single-Phase Quasi Z-Source Dynamic Voltage Restorer(DVR) (단상 Quasi Z-소스 동적전압보상기(DVR))

  • Lee, Ki-Taeg;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • This paper deals with a single-phase dynamic voltage restorer(DVR) with a quasi Z-source topology. The proposed system based on a single-phase quasi Z-source PWM ac-ac converter which have features such as the input voltage and output voltage are sharing ground, and input current operates in continuous current mode(CCM). For the detection of voltage sag-swell, peak voltage detection method is applied. Also, the circuit principles of the proposed system are described. During the 60% severe voltage sag and 30% voltage swell, the proposed system controls the adding or missing voltage and maintains the rated voltage of sinusoidal waveform at the terminals of the critical loads. Finally, PSIM simulation and experimental results are presented to verify the proposed concept and theoretical analysis.

A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System (태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer

  • He, Wei;Li, Shihua;Yang, Jun;Wang, Zuo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.147-159
    • /
    • 2018
  • In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.

Implementation of the CC/CV Charge of the Wireless Power Transfer System for Electric Vehicle Battery Charge Applications (전기 자동차 배터리 충전 애플리케이션을 위한 무선 전력 전송 시스템의 CC/CV 충전의 구현)

  • Vu, Van-Binh;Tran, Duc-Hung;Pham, Van-Long;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.25-26
    • /
    • 2015
  • Inductive Power Transfer (IPT) method becomes more and more popular for the Electric Vehicle (EV) battery charger due to its convenience and safety in comparison with plugged-in charger. In recent years, Lithium batteries are increasingly used in EVs and Constant Current/Constant Voltage (CC/CV) charge needs to be adopted for the high efficiency charge. However, it is not easy to design the IPT Battery Charger which can charge the battery with CC/CV charge under the wide range of load variation due to the wide range of variation in its operating frequency. This paper propose a new design and control method which makes it possible to implement the CC/CV mode charge with minimum frequency variation (less than 1kHz) during all over the charge process. A 6.6kW prototype charge has been implemented and 96.1% efficiency was achieved with 20cm air gap between the coils.

  • PDF

A Study of the Charging Current Effect on Underground Distribution Line in Electric Railway (전철 지중배전선로의 충전전류보상에 관한 연구)

  • Kim, Yang-Su;Jang, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.214-218
    • /
    • 2008
  • Because on the high-tension underground distribution line of an electric railway high voltage XLPE Cable two or three circuits between railway stations with a standard as receiving transformer facilities are established at a $30km{\sim}50km$ interval, reactive power in which the phase of a current is larger than that of a voltage is supplied when trains are not working, so when there are no loading or low loading as night. Due to the long-distance trend of the underground distribution system on an alternating current railway distribution line, the terminal voltage of a transformer is over the standard voltage, and after all, commercial cycle overvoltage is continued. To solve this problem, the shunt reactor is installed in middle of power distribution lines to maintain receiver voltage meted under the allowance regulation through control of the reactive power. Also, in case that the thickness of single cable is over $60mm^2$ and length of line is about over 30km, a circuit breaker is broken by shorting shunt ability of charging current in excess of shunt current(31.5A.rms). Therefore, this thesis presents installing the location of shunt reactor for quantitative analysis by using optimum algorism for compensation and control of the charging current.

  • PDF

Design of Low Area Decimation Filters Using CIC Filters (CIC 필터를 이용한 저면적 데시메이션 필터 설계)

  • Kim, Sunhee;Oh, Jaeil;Hong, Dae-ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.71-76
    • /
    • 2021
  • Digital decimation filters are used in various digital signal processing systems using ADCs, including digital communication systems and sensor network systems. When the sampling rate of digital data is reduced, aliasing occurs. So, an anti-aliasing filter is necessary to suppress aliasing before down-sampling the data. Since the anti-aliasing filter has to have a sharp transition band between the passband and the stopband, the order of the filter is very high. However, as the order of the filter increases, the complexity and area of the filter increase, and more power is consumed. Therefore, in this paper, we propose two types of decimation filters, focusing on reducing the area of the hardware. In both cases, the complexity of the circuit is reduced by applying the required down-sampling rate in two times instead of at once. In addition, CIC decimation filters without a multiplier are used as the decimation filter of the first stage. The second stage is implemented using a CIC filter and a down sampler with an anti-aliasing filter, respectively. It is designed with Verilog-HDL and its function and implementation are validated using ModelSim and Quartus, respectively.

Wireless Power Charging System Capable of Soft-Switching Operation Even in Wide Air Gaps (넓은 공극범위에서 소프트스위칭 동작하는 무선전력 충전시스템)

  • Yu-Jin, Moon;Jeong-Won, Woo;Eun-Soo, Kim;In-Gab, Hwang;Jong-Seob, Won;Sung-Soo, Kang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.515-525
    • /
    • 2022
  • The wireless power transfer (WPT) charging system for AGV depends highly on the coupling conditions due to air gap variation. To attain stable output power with high transfer efficiency under various coupling conditions, a single-stage, DC-DC converter that operates with robustness to changes in air gaps is proposed for the WPT system. The proposed converter is capable of soft switching under the set input voltage (Vin: 380 VDC), load conditions (0-1 kW), and air gap changes (30-70 mm). In addition, a wide output voltage range (Vo: 39-54 VDC) can be controlled by varying the link voltage due to the phase control at a fixed switching frequency. Experimental results are verified using a prototype of a 1 kW wireless power charging system.

Output Voltage Control Technique Using Current Forward Compensation for Phase Shifted Full Bridge Converter Without Output Capacitor (출력 커패시터가 없는 위상천이 풀브릿지 컨버터의 전류 전향 보상을 이용한 출력 전압 제어 기법)

  • Shin, You-Seung;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • At present, the low-voltage, high-current type power supply is mainly used for effective sterilization in the ballast water treatment system. Research on PSFB converters without output capacitors has been ongoing. Such converters effectively treat ballast water without a separate disinfectant through electric pulses by applying a pulse-type power to the output electrode without an output capacitor. However, in the case of the pulse-type electrolysis treatment method, voltage overshoot can occur due to abrupt voltage fluctuations when the load changes, resulting in circuit reliability problems because of the output capacitorless system. Therefore, a new voltage control algorithm is required. In this paper, we will discuss voltage control for pulsed electrolysis topology without an output capacitor. The proposed voltage control method has been verified using Simulation and experiment. The usefulness of the proposed control method has been proven by the experimental results.