• 제목/요약/키워드: Compartmentation

검색결과 23건 처리시간 0.023초

SNAREs in Plant Biotic and Abiotic Stress Responses

  • Kwon, Chian;Lee, Jae-Hoon;Yun, Hye Sup
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.501-508
    • /
    • 2020
  • In eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNAREs are well-conserved across eukaryotes, genomic studies revealed that plants have dramatically increased the number of SNARE genes than other eukaryotes. This increase is attributed to the sessile nature of plants, likely for more sensitive and harmonized responses to environmental stresses. In this review, we therefore try to summarize and discuss the current understanding of plant SNAREs function in responses to biotic and abiotic stresses.

자동 스프링클러로 보호된 창의 내화 성능 평가에 관한 연구 (The Evaluation of Fire Endurance of Glazing Systems with Automatic Sprinklers)

  • 이창섭;장석화;김홍;정기창
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1998년도 추계학술발표회 논문 초록집
    • /
    • pp.73-76
    • /
    • 1998
  • To use glazing systems protected by automatic sprinklers as fire barriers in building compartmentation, fire endurance tests of these systems have been performed by several research workers. Most of the tests concerned the types of glasses and sprinklers, sprinkler water flow rate, and sprinkler activation time. Horizontal side wall sprinklers and window glazing systems with a vertical center mullion were mainly applied in the tests. In the study, full-scale fire endurance tests were carried out to verify the ability of large glazing systems divided by a horizontal mullion and protected by pendent vertical sprinklers. The result shows that the protrusive length of the horizontal mullion, which is perpendicular to the glass surface, is the main parameter that determines the fire resistance rating of the systems. The mullion obstructs the water flow in the glass.

  • PDF

초고층 건축물의 수직 구획화에 따른 급기가압제연시스템 성능평가에 관한 연구 (A Study on the Smoke Control Performance Evaluation of High-rise Buildings under Smokeproof Enclosure Design Scenarios)

  • 배상환;류형규;이병석
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.343-350
    • /
    • 2014
  • Regardless of the building design scenarios, evaluation of high-rise buildings required to have smoke-proof enclosures that are provided with a smoke management system. The goal of the smoke management system design is to make sure the pressure differentials at every story within the building fall within the allowable pressure range. If the minimum design pressure is not met, smoke may enter the stair. If the provided pressure is too great, it becomes difficult for occupants to open the doors, while attempting to egress. Ensuring that the pressure differential between the vestibule and the floor is within the prescribed range becomes challenging, due to natural effects on the building, such as the stack effect. In this research, smokeproof enclosure design scenarios were evaluated; and as a result, separation levels for compartmentation were deduced, in the balancing of pressurized-vestibule smoke control systems.

우리나라 고층건축화재의 문제점과 그 대책의 기본방향에 관한 연구 (A Study on Problems of High-rise Building Fires in Korea and the Basic Directions for Fire Safety of High-rise Building Design)

  • 이강훈
    • 한국화재소방학회논문지
    • /
    • 제4권2호
    • /
    • pp.15-26
    • /
    • 1990
  • Building become higher. larger and more complex than ever before, showing abrupt changes in building structures. forms and mechanical systems. Likewise hazads of fire and the scale of fire losses become more and more greater. Therefore. considerations for fire safety take up great portion of the building design process. In this study, problems of high-rise building fires and basic directions for fire safety of high-rise building design were studied through the statistical analysis of 138 fire cases. The results of this study are summarized as follows : ·Most of the fires in high-rise building occur on the low floors and the fire frequencies are very low on the upper floors. Fire casualties are liable to be more on the upper floors than on tile floor of fire origin. ·The important causes of evacuation failures were analyzed as being late in escape and lack of stairwell enclosures. ·The main cause of vertical fire spread is lack of stairwell enclosures. However, the fire spreads mainly through the enterior windows in apartment houses. The combustible materials in buildings act on as the major factors of horizontal fire spread and the improper fire doors play role of another the critical causes. ·The basic directions for fire safety of high-rise building design put much stress firstly on the compartmentation of the buildings effectively performing the provision of safe escape routes and the safe refuse places in buildings.

  • PDF

선체모델링에 있어서 구조면의 정의 및 표현 (Representation of Structural Surface for Hull Modeling)

  • 김광욱;김원돈;남종호
    • 대한조선학회논문집
    • /
    • 제29권2호
    • /
    • pp.30-37
    • /
    • 1992
  • 선체는 매우 복잡한 구조물이므로 설계 및 생산의 효율적인 수행을 위하여 선체구조의 모델링에 의한 작업이 필수적이다. 선체모델 구축에 있어서 구조면의 모델링은 초기선형정의에서부터, 선각정보처리, 구획배치, 의장설계, 배관설계, 구조해석 등 선체관련분야와 직접 연관된다. 본 연구에서는 구조면의 효과적인 모델링을 위하여 구조면들간의 위상학적인 자료구조를 구성하므로써 선체구조의 기하학적 정보를 설계의 단계에 따라 발전시켜 나가고 효율적으로 변경시킬 수 있도록 하였다. 본 연구에서 수행된 구조면의 모델링은 선체설계에서부터 생산에 이르기까지 일관된 정보처리를 위한 통합선체모델(Unified Hull Model)구축의 기초가 될 것이다. 구축된 모델의 가시화를 위하여 컴퓨터그래픽스를 이용하여 선체모델을 실물감 있게 표현하였다.

  • PDF

Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

  • McLaggan, Martyn S.;Gupta, Vinny;Hidalgo, Juan P.;Torero, Jose L.
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.299-310
    • /
    • 2021
  • External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.

How do Citrus Crops Cope with Aluminum Toxicity?

  • Arunakumara, K.K.I.U.;Walpola, Buddhi Charana;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.928-935
    • /
    • 2012
  • World Agriculture faces daunting challenges in feeding the growing population today. Reduction in arable land extent due to numerous reasons threatens achievement of food and nutritional security. Under this back ground, agricultural use of acidic soils, which account for approximately 40 % of the world arable lands is of utmost important. However, due to aluminum (Al) toxicity and low available phosphorous (P) content, crop production in acidic soils is restricted. Citrus, in this context, gains worldwide recognition as a crop adapted to harsh environments. The present paper reviewed Al toxicity and possible toxicity alleviation tactics in citrus. As reported for many other crops, inhibition of root elongation, photosynthesis and growth is experienced in citrus also due to Al toxicity. Focusing at toxicity alleviation, interaction between boron (B) and Al as well as phosphorus and Al has been discussed intensively. Al toxicity in citrus could be alleviated by P through increasing immobilization of Al in roots and P level in shoots rather than through increasing organic acid secretion, which has been widely reported in other crops. Boron-induced changes in Al speciation and/or sub-cellular compartmentation has also been suggested in amelioration of root inhibition in citrus. Despite the species-dependent manner of response to Al toxicity, many commercially important citrus species can be grown successfully in acidic soils, provided toxicity alleviation Agro-biological tactics such as addition of phosphorous fertilizers are used properly.

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF

초고층 건축물용 내화벽체 요구성능 및 개발방향 설정을 위한 기초연구 (A Basic Study on Required Performance and Development Direction of Fire Resistance Wall on High-rise Building)

  • 김대회;박수영
    • 한국화재소방학회논문지
    • /
    • 제25권4호
    • /
    • pp.1-7
    • /
    • 2011
  • 최근 초고층 건축물의 방재분야에 대한 관심이 증가하고 있으며, 특히 화재발생 시 고층으로 인한 피난시간의 증가에 대비하여 건축물내의 화재전파를 최소로 억제하고자 노력하고 있다. 방화구획은 건축물에서 화재전파를 억제하는 대표적인 방법으로 내화성능이 있는 벽체와 방화문을 이용하여 화재발생 시 해당구획내에서 연소가 종료되거나 타 구획으로의 화재전파시간을 증가시킴으로써 피난시간을 확보하게 된다. 그러나 현행 건축법에는 초고층건축물을 고려치 않은 최대 2시간 내화성능만은 요구하고 있어 초고층 건축물용 방화벽의 개발에 걸림돌이 되고 있다. 따라서 본 연구에서는 내화벽체의 성능등급에 대하여 검토하였으며, 향후 초고층 건축물용 내화벽체 개발을 위하여 내화성능, 시공성, 사용성 등을 고려한 제품개발 방향을 제시하였다.

인삼엽요병에서 효소활성도의 변화 (Study on the Enzyme Activity in Leaf-Burning Disease of Panax ginseng C.A. Meyer)

  • 양덕조;김명원
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.92-97
    • /
    • 1989
  • 인삼엽을 강광(100 KLuw) 및 고온($45^{\circ}C$, 암상태)에 처리하여 효소(glucose-6-phosphate dehydrogenase, acid phosphatase, catalase, peroxidase)의 활성도를 조사한 결과 두 처리구에서 공히 감소하는 경향이었으나, 특기 강광에서 활성도가 현저히 감소하였다. 이와 같은 활성도 감소는 효소의 thermal stabilities나 coagulation 등과 같은 광에 의한 2차적인 엽온상승 효과에 따른 inactivation이 아니며, proteolytic activity 증가로 인한 효소단백질의 함량감소로 확인되었다. 인삼엽에서 proteolytic activity가 강광에 의해 급속히 증가하는 것으로 보아 정상엽(normal leaf)에 inactive 상태로 내재(compartmentation)되어 있는 proteinase가 타 식물에 비해 많은 것으로 사료된다. 또한 chlorphyll bleaching과 효소의 inactivation을 유발시킬 수 있는 superoxide radical(${O_2}^{-}$)의 광화학적 생성율이 비교식물(Solanum nigrum)보다 높게 나타나고 crude saponin이 superoxide의 생성율을 촉진하는 것으로 보아 superoxide에 의한 pigment system의 광산화율이 타 식물에 비해 높을 것으로 사료된다.

  • PDF