• Title/Summary/Keyword: Compartment modeling

Search Result 66, Processing Time 0.023 seconds

A Development of Data Structure and Mesh Generation Algorithm for Global Ship Analysis Modeling System (선박의 전선해석 모델링 시스템을 위한 자료구조와 요소생성 알고리즘 개발)

  • Kim I.I.;Choi J.H.;Jo H.J.;Suh H.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • In the global ship structure and vibration analysis, the FE(finite element) analysis model is required in the early design stage before the 3D CAD model is defined. And the analysis model generation process is a time-consuming job and takes much more time than the engineering work itself. In particular, ship structure has too many associated structural members such as stringers, stiffness and girders etc. These structural members should be satisfied as the constraints in analysis modeling. Therefore it is necessary to support generation of analysis model with satisfying these constraints as an automatic manner. For the effective support of the global ship analysis modeling, a method to generate analysis model using initial design information within ship design process, that hull form offset data and compartment data, is developed. In order to easily handle initial design information and FE model information, flexible data structure is proposed. An automatic quadrilateral mesh generation algorithm using initial design information to satisfy the constraints imposed on the ship structure is also proposed. The proposed data structure and mesh generation algorithm are applied for the various type of vessels for the usability test. Through this test, we have verified the stability and usefulness of this system including mesh generation algorithm.

Flow and Heat Transfer Analysis for the Ventilating System in Automobile Interior with a Forced Exhaust (강제배기를 수반한 자동차 실내의 환기시스템에 대한 유동 및 열전달 해석)

  • Lee Sang-Ho;Moh Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.469-476
    • /
    • 2005
  • Numerical modeling has been carried out to investigate the two-dimensional air flow in automobile interior with a forced exhaust close to main air inlet for typical ventilation modes. The characteristics such as streamlines and temperature fields in the passenger compartment room with the forced exhaust are analyzed with comparison of the cases without a forced exhaust. The simulation results show that air flow on the floor near the front seat is increased with the forced exhaust for all ventilation modes. Flow recirculation in the cabin is most active in mode 2 with a vertical suction inlet in comparison with other two modes. In particular, less time is taken for air temperature to reach the inlet temperature due to the forced exhaust for the ventilation modes. Finally, it could be predicted that ventilating air flow is much improved with the forced exhaust in the interior Modeling results in this study can be applied to the optimal design of automobile interior fur air ventilation system.

Modeling of Particle Removal in the Coarse Media of Direct Horizontal-Flow Roughing Filtration (Direct Horizontal-Flow Roughing Filtration의 조립 여상에서의 입자 제거 모델링)

  • Ahn, Hyo-Won;Park, No-Suk;Lee, Sun-Ju;Lee, Kyung-Hyuk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.338-347
    • /
    • 2005
  • Horizontal-Flow Roughing Filtration (HRF) is one of altemative pretreatment methods e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200 NTU) and at higher filtration rate (>1 m/h). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing (HRF) by addition of low dose of coagulant prior to filtration. In this study to optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settlers. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments carried out. The conventional column settling test has been found to be an handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different presence of organic matter, etc.) and different inital process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20mm) has been found to be of 3 m/h filtration rate with filter length of 4-4.5 m.

The Effects of Water Mist on the Compartment Fire

  • Ryou, Hong-Sun;Kim, Sung-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • The present study investigates the fire suppression characteristics using a water mist fire suppression system. Numerical simulations of fire suppression with water mist are performed with considering the interaction of fire plume and water spray. The predicted temperature fields of smoke layer are compared with those of measured data. Numerical results agree with the experimental results within $10^{\circ}C$ in the case without water mist. In the case of fire suppression with water mist, numerical results do not predict well for temperature field in the gradual cooling region after water mist injection. But the predicted results of initial fire suppression are in good agreement with those of measured data. The reason for the discrepancy between predicted and measured data is due to the poor combustion modeling during the injection of water mist. More elaborate models for numerical simulation are required for better predictions of the fire suppression characteristics using water mist.

Evaluation of the Inputs Efficiency for the Interior Noise of the Vehicle using Vector Synthesis Method (벡터합성법을 이용한 차량 실내소음의 입력원 영향도 평가)

  • Yang, In-Hyung;Jeong, Jae-Eun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.562-567
    • /
    • 2010
  • A passenger vehicle has various and complicated transmission paths of sound and vibration. In order to identify the mechanism of transfer path, estimation of excitation force and exact modeling of transfer path are required. In this paper vector synthesis technique is employed to identify the characteristics of road noise and its transmission to vehicle compartment through noise and vibration analysis. Vibration reduction efficiency of each transfer path is evaluated by comparing individual vector components obtained virtual simulation. The degree of effect is used to estimate the contribution of vibration input components to total output. And in this paper presents a new technique based on simulation studies using vector synthesis diagram and design of experiments, by which the effects of magnitude and phase change of input paths can be predicted.

Computational modeling of the coronary circulation for the assessment of the coronary artery bypass through left ventricle (좌심실을 통한 관상동맥 우회술의 평가를 위한 관상순환계의 수치적 모델)

  • Shim, Eun-Bo;Kamm, Roger D.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.385-390
    • /
    • 2000
  • In this study we propose the computational model for the coronary circulation. The bypass from left ventricle is also considered. Lumped parameter model with three compartments in the coronary circulation is implemented in this study. We connected the coronary artery compartment with left ventricle to explain the bypass procedure from left ventricle. The asymmetric resistance is assumed in the bypass line from left ventricle. The present numerical method is tested for normal coronary circulation and the results are compared with the existing computational work. The bypass simulation is conducted and the flow pattern is delineated. The effect of shunt resistance and coronary compliance to circulation is investigated for the better design of the bypass shunt.

  • PDF

A Study on the Crashworthiness for Passenger Compartment of High Speed Train (고속전철 승객 탑승부의 충돌 안전도 평가에 관한 연구)

  • 김상범;김헌영;박제승;한동철
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.198-204
    • /
    • 2001
  • Train crashes involve complex interaction between deformable bodies in multiple collisions. The purpose of this study is to suggest the effective analytical procedure using hybrid model for the crashworthiness of motorized trailer of high speed train. The hybrid approach, with very short modeling times and reduced computation times to extract the global behaviour and to perform a pre-optimization of the considered structure. Firstly, various types of crash events are investigated and the conditions for numerical simulation are defined. In this paper, the structural crashwonhiness of Korean High Speed Train trailer was examined through FE analysis. Crash analyses on energy absorbing part and safety zone were carried out to determine each section force. Rollover analysis was performed to observe the amount of intrusion in the passenger's area in case of rollover accident.

  • PDF

Transfer Path Analysis and Estimation of the Road Noise for the Driving Vehicle (주행 차량의 로드 노이즈 예측을 위한 각 입력원의 기여도 평가)

  • Yang, In-Hyung;Jeong, Jae-Eun;Yoon, Ji-Hyun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1071-1077
    • /
    • 2010
  • The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness(NVH) engineers. A passenger vehicle has various and complicated transmission paths of sound and vibration. In order to identify the mechanism of transfer path, estimation of excitation force and exact modeling of transfer path are required. This paper presents method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. And vector synthesis technique is employed to identify the characteristics of road noise and its transmission to vehicle compartment through noise and vibration analysis. Vibration reduction efficiency of each transfer path is evaluated by comparing individual vector components obtained virtual simulation.

A Study on the Reduction of Booming Noise of an Automobile (승용차의 부밍 소음 저감에 관한 연구)

  • 이상현;강상욱;최형길;이장무;성명호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.867-871
    • /
    • 1996
  • Recently many studies have been carried out to predict the characteristics of vehicle noise and to reduce the noise for enhancing the ride quality. In this study, the structural-acoustic coupling theory and the acoustic finite element theory were reviewed, and the structural acoustic coupling analysis was applied to an automobile. Because of nonuniformed lateral shape of a compartment cavity, the acoustic modes were calculated with 3-D finite element modeling. The structural modes were measured with the modal testing. Using the structural-acoustic cooling analysis, the modes which strongly coupled to the interior noise were identified and the boundary regions which could reduce noise level efficiently by structural modification were predicted.

  • PDF

Pharmacokinetic-Pharmacodynamic Modeling of a Direct Thrombin Inhibitor, Argatroban, in Rats

  • Park, Eun-Hye;Shin, Beom-Soo;Yun, Chi-Ho;Lee, Mann-Hyung;Yoo, Sun-Dong
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.373-379
    • /
    • 2009
  • This study was conducted to develop a pharmacokinetic-pharmacodynamic (PK/PD) model of a direct thrombin inhibitor, argatroban to predict the concentration-effect profiles in rats. Argatroban was i.v. injected to rats at 0. 2, 0.8 and 3.2 mg/kg doses (n = 4-5 per dose), and plasma drug levels were determined by a validated LC/MS/MS assay. The pharmacokinetics of argatroban was linear over the i.v. dose range studied. The thrombin time (TT) and the activated partial thromboplastin time (aPTT) were measured in rat plasma and they were found to linearly increase with increasing the dose. A 2-compartment pharmacokinetic model linked with an indirect response pharmacodynamic model was successfully utilized to evaluate the drug concentration-response relationship.