• Title/Summary/Keyword: Compartment fire

Search Result 213, Processing Time 0.016 seconds

Development of Fast Side-impact Sensing Algorithm (고속 측면 충돌 감지 알고리즘의 개발)

  • 박서욱;김현태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Accident statistics shows that the portion of fatal occupant injuries due to side impacts is considerably high. The side impact usually leads to a severe intrusion of side structure into the passenger compartment. Furthermore, the safety zone for the side impact is relatively small compared to the front impact. Those kinds of physics for side impact frequently result in a fatal injury for the occupant. Therefore, NHTSA and EEVC are trying to intensify the regulation for the occupant protection against side impact. Both the regulation and recent market trends are asking for an installation of side airbag. There are several types of system configuration for side impact sensing. In this paper, we adopt the acceleration-based remote sensing method for the side airbag control system. We mainly focus on the development of hardware and crash discrimination algorithm of remote sensing unit. The crash discrimination algorithm needs fast decision of airbag firing especially for high-speed side impact such as FMVSS 214 and EEVC tests. It is also required to distinguish between low-speed fire and no-fire events. The algorithm should have a sufficient safety margin against any misuse situation such as hammer blow, door slam, etc. This paper introduces several firing criteria such as acceleration. velocity and energy criteria that use physical value proportional to crash severity. We have made a simulation program by using Matlab/Simulink to implement the proposed algorithm. We have conducted an algorithm calibration by using real crash data for 2,500cc vehicle. The crash performance obtained by the simulation was verified through a pulse injection method. It turned out that the results satisfied the system requirements well.

  • PDF

Surrogate Models and Genetic Algorithm Application to Approximate Optimization of Discrete Design for A60 Class Deck Penetration Piece (A60 급 갑판 관통 관의 이산설계 근사최적화를 위한 대리모델과 유전자 알고리즘 응용)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.377-386
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistant system installed on a horizontal compartment to prevent flame spreading and protect lives in fire accidents in ships and offshore plants. This study deals with approximate optimization using discrete variables for the fire resistance design of an A60 class deck penetration piece using different surrogate models and a genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class deck penetration piece. For the approximate optimization of the piece, the length, diameter, material type, and insulation density were applied to discrete design variables, and temperature, productivity, and cost constraints were considered. The approximate optimum design problem based on the surrogate models was formulated such that the discrete design variables were determined by minimizing the weight of the piece subjected to the constraints. The surrogate models used in the approximate optimization were the response surface model, Kriging model, and radial basis function-based neural network. The approximate optimization results were compared with the actual analysis results in terms of approximate accuracy. The radial basis function-based neural network showed the most accurate optimum design results for the fire resistance design of the A60 class deck penetration piece.

Evaluation of the Smoke Characteristics of Some Plastics in an Enclosed Compartment (밀폐된 구획 내 일부 플라스틱류의 연기 특성 평가)

  • Ji-Sun You;Kyeong-Sin Kang;Jae-Sung Lee;Yeong-Jin Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.421-425
    • /
    • 2023
  • The smoke properties of some plastics were investigated, including polymethyl methacrylate (PMMA), polycarbonate (PC), polyvinyl chloride (PVC), and polyacetal. For smoke density, related values of static smoke characteristics were measured using a smoke density tester according to ISO 5659-2. In addition, combustion with and without flame was measured independently. Under the condition of radiant heat of 50 kW/m2 using the flame method, the measured value of the maximum specific optical density (Dm) of smoke showed the lowest value for PMMA (401.26) and the highest value for PVC (1345.04). In addition, PMMA (262.82) was the lowest and PVC (1385.43) was the highest in the measured Dm of smoke under the condition of radiant heat of 50 kW/m2 in the non-flame method. Smoke generation during combustion of the object is significantly affected by the radiant heat flux, and carbonizable plastics showed a higher amount of smoke than non-carbonizable plastics during combustion. Polymers with aromatic groups in the main polymer chain generated a large amount of smoke because a large amount of char was generated due to thermal decomposition.