• Title/Summary/Keyword: Compartment design

Search Result 162, Processing Time 0.024 seconds

Development of an Optimal Compartment Design System of Naval Ships Using Compartment Modeling and Ship Calculation Modules (구획 모델링 및 선박 계산 모듈을 이용한 함정의 최적 구획 배치 시스템 개발)

  • Roh, Myung-Il;Lee, Sang-Uk;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Recently, compartment design of a naval ship for efficiently utilizing the limited spaces has become more important. However, the compartment design of the naval ship was not optimized like that of a commercial ship because of a number of design requirements. Thus, the task is being manually performed using the data of parent ships and designers' experiences. To improve this procedure, an optimal compartment design system, which can generate better compartment design result with the satisfaction of various design requirements, is developed in this study. Finally, to evaluate of the applicability of the developed system, it is applied to the compartment design of a 9,000ton missile destroyer(DDG). The result shows that the developed system can yield better result than original design.

On a Compartment Layout Computer Model and Associated Data Structure (선박 구획배치 전산모델과 그 자료구조에 관한 연구)

  • Yong-Chul,Kim;Kyu-Yeul,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.117-126
    • /
    • 1990
  • In the early stage of ship design process large number of alternative compartment layout designs are generated and examined iteratively. Therefore, the design efficiency will be considerably enhanced if a tool is available to perform this kind of iterative design process effectively in a relatively short time. This paper describes a method for generating and evaluating various alternative compartment layout designs in a personal computer. In this method, computer model of a compartment layout is generated by establishing the hierarchical structure of the entities forming a compartment and defining clearly the relationships among the entities. The evaluation of the design alternatives are effectively performed utilizing the computer model generated. The data structure for storing the defined compartment layout is explained and an illustrative example is given showing the application of the method to the design and evaluation of compartment layout of an Oceanographic Research Vessel.

  • PDF

Structural Analysis for VVIP Cabin Compartment Modification STC of Commercial Airplane

  • Lee, Sang Hoon;Bang, Dae Han;Choi, Sang Min;Choi, Hang Suk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.30-39
    • /
    • 2021
  • This paper presents a study on the design and structural substantiation of the interior structure of the new VVIP aircraft. In this study, the structural design and analysis of the compartment with aluminum alloy and sandwich composite panel were performed. The structural design requirements from the Federal Aviation Administration were identified. The structural analysis of the compartment was performed by the utilization of the finite element analysis method, for the structural design process. Therefore, the designed cabin compartment secured the structural integrity, and satisfied its certification standards and design requirements via structural analysis.

Development of Automated Algorithm for Compartment Arrangement of Oil Tanker (유조선의 구획배치 자동화 알고리즘 개발)

  • Song, Ha-Cheol;Na, Seung-Su;Jo, Du-Yeon;Shim, Cheon-Sik;Lee, Gang-Hyeon;Jeong, Sol;Heo, Joo-Ho;Jeong, Tae-Seok;Lee, Chul-Ho;Jo, Young-Chun;Kim, Dong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Nowadays, optimum structural design techniques based on CSR have been developed and applied to the preliminary design stage focused on minimum weight and minimum construction cost of ship structure. Optimum structural design algorithm developed before could minimize weight and cost on fixed compartment arrangement. However, to develop more efficient design technique, a designer needs to combine optimized compartment arrangement with optimized ship structural design because compartment arrangement has a large effect on structural design according to the change of still water bending moment as a consequence of compartment arrangement change. In this study, automated algorithm for compartment arrangement of an oil tanker is developed to apply preliminary structural design. The usefulness of developed algorithm is verified with Aframax oil tanker constructed by STX shipbuilding Co.Ltd..

Optimal Design of Vehicle Passenger Compartment (차량승객실의 최적설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 1999
  • This study is to develop design sensitivity analysis method based on continuum theory for the actual buckling load of vehicle passenger compartment with respect to sizing design variables. For nonlinear structural analysis, both geometric and material nonlinear effects are considered. The total Lagrangian formulation for incremental equilibrium analysis and one-point linear eigenvalue problem for buckling analysis are utilized. Numerical methods are presented to evaluate design sensitivity expressions, using structural analysis results from FEM code. Optical design of vehicle passenger compartment with buckling constraint solved using Gradient projection method.

  • PDF

Simulating the Response of a 10-Storey Steel-Framed Building under Spreading Multi-Compartment Fires

  • Jiang, Jian;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • This paper presents a numerical investigation on the structural response of a multi-story building subjected to spreading multi-compartment fires. A recently proposed simple fire model has been used to simulate two spreading multi-compartment fire scenarios in a 10-story steel-framed office building. By assuming simple temperature rising and distribution profiles in the fire exposed structural components (steel beams, steel column and concrete slabs), finite element simulations using a three-dimensional structural model has been carried out to study the failure behavior of the whole structure in two multi-compartment fire conditions and also in a standard fire condition. The structure survived the standard fire but failed in the multi-compartment fire. Whilst more accurate fire models and heat transfer models are needed to better predict the behaviors of structures in realistic fires, the current study based on very simple models has demonstrated the importance and necessity of considering spreadingmulti-compartment fires in fire resistance design of multi-story buildings.

On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR (구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Bae, Sang-Don
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.

Proposal of Legislation of Smoke Compartment for Prevention and Control of Smoke Diffusion in Buildings (건축물의 연기확산 방지 및 제어를 위한 방연구획의 법제화 제안)

  • Kwon, Young-Jin;Jin, Seung-Hyeon;Kim, Hye-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.96-97
    • /
    • 2019
  • According to building law, there are only regulations on the fire prevention compartments that can perform the function of partial smoke compartment, but the building law management of the smoke compartment for effective smoke diffusion prevention and control is not possible. The lack of control on the smoke compartment such as leakage rate on the penetrating part, and the lack of leakage rate in the design of smoke control of fire safety law resulted in the absence of fundamental safety technology. Therefore, this study seeks to find solutions to domestic problems after reviewing relevant domestic laws and regulations.

  • PDF

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Development of a Naval Vessel Compartment Arrangement Application using Differential Evolution Algorithm (Differential evolution 알고리즘을 이용한 생존성 기반의 함정 격실배치 애플리케이션 개발)

  • Kim, Youngmin;Jeong, Yong-Kuk;Ju, SuHeon;Shin, Jong-Gye;Shin, Jung-Hack
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.410-422
    • /
    • 2014
  • Unlike other weapon systems, a naval vessel has unique characteristics in that the vessel itself is a naval unit. In limited space, compartments with various objectives and characteristics need to be arranged, so that vessel performance is maximized. This paper studied a compartment arrangement algorithm that considers activity relationships among compartments and survivability of a vessel. Based on the study, a compartment arrangement application is developed that can generate various layout alternatives swiftly. The application developed in this study aims at automating a two dimensional compartment layout problem. A combinatorial optimization is performed with the differential evolution algorithm to achieve the optimized layout.