• Title/Summary/Keyword: Comparison of coordinates

Search Result 184, Processing Time 0.039 seconds

Skew Correction for Document Images Using Block Transformation (블록 변환을 이용한 문서 영상의 기울어짐 교정)

  • Gwak, Hui-Gyu;Kim, Su-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3140-3149
    • /
    • 1999
  • Skew correction for document images can be using a rotational transformation of pixel coordinates. In this paper we propose a method which corrects the document skew, by an amount of $\theta$ degrees, using block information, where the block is defined as a rectangular area containing adjacent black pixels. Processing speed of the proposed method is faster than that of the method using pixel transformation, since the number of floating-point operations can be reduced significantly. In the proposed method, we rotate only the four corner points of each block, and then identify the pixels inside the block. Two methods for inside pixel identification are proposed; the first method finds two points intersecting the boundary of the rotated block in each row, and determines the pixels between the two intersection points as the inside pixel. The second method finds boundary points based on Bresenham's line drawing algorithm, using fixed-point operation, and fills the region surrounded by these boundaries as black pixels. We have measured the performance of the proposed method by experimenting it with 2,016 images of various English and Korean documents. We have also proven the superiority of our algorithm through performance comparison with respect to existing methods based on pixel transformation.

  • PDF

Comparison of Chord method with Surveying in Track irregularity Measurement (측량과 현방식 궤도틀림 측정 비교)

  • Lee, Jee-Ha;Lee, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1647-1652
    • /
    • 2008
  • Track geometry consists of tangent and curved lines, which caused undesirable changes in initial track geometry by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To be able to objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, this method determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from specific property of measuring tool. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolly. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is Trackmaster, measures versine with 2m of chord length.

  • PDF

Color Differences of Standard Samples according to Their Lightness Levels (명도 수준에 다른 목표 샘플의 색차)

  • Kim Jeong Ryeol;Lee Seung Jun;Kim Sam Soo
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.19-25
    • /
    • 2005
  • A colour-difference formulae would be based on a colour appearance model, but, So far, most colour-difference formulae in common use are based on empirical fits to data. Therefore, of the many proposed, none are completely satisfactory but advances have been made in recent years. A new color-difference data set has been produced with the aims of making a comparison of the advanced CIE Lab formulae as well as confirming the effect of color-difference. 416 low lightness pairs that have only lightness-difference were produced for evaluation of CIE Lab-based formulae on lightness-difference from glossy polyester fabric. The standard color-difference pair was prepared and used. It was neutral grey sample pair that has only lightness difference. The standard pair was used to investigate lightness tolerances. And grey-scale method used to evaluate visual assessment. CIE Lab coordinates of the samples were measured using a X-Rite 8200 spectrophotometer. Visual assessments were carried out using Gretag Macbeth The Judge II Light Booth. A study of color tolerances at low lightness was carried out and get avaliable some results.

Usability of inclinometers as a complementary measurement tool in structural monitoring

  • Pehlivan, Huseyin;Bayata, Halim Ferit
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1077-1085
    • /
    • 2016
  • In the last few years, many structural monitoring studies have been performed using different techniques to measure structures of different scales such as buildings, dams or bridges. One of the mostly used tools are GPS instruments, which have been utilized in various combinations with accelerometers and some other conventional sensors. In the current study, observation series were recorded for 8 hours with GPS receivers (NovAtel) and Inclination Measurement Sensors mounted on a television tower in Istanbul, Turkey. Each series of observations collected from two different sensors were transformed into a single coordinate system (Local Topocentric Coordinates System). The positional changes of the tower were calculated from the GPS and the inclination data. These changes were plotted in two dimensions (2D) on the same graphic. Thus, the possibility of comparison and analysis were found using the data from both the GPS and the Inclinometer complement each other, in the real test area. The positional changes of the tower were modeled for further examination. As a result, the movement of the tower within an area of $1{\times}1cm^2$ was observed. Based on the results, it can be concluded that inclinometers can be used for monitoring the structural behavior of the tower.

3D Omni-directional Vision SLAM using a Fisheye Lens Laser Scanner (어안 렌즈와 레이저 스캐너를 이용한 3차원 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.634-640
    • /
    • 2015
  • This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.

A Study m Camera Calibration Using Artificial Neural Network (신경망을 이용한 카메라 보정에 관한 연구)

  • Jeon, Kyong-Pil;Woo, Dong-Min;Park, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1248-1250
    • /
    • 1996
  • The objective of camera calibration is to obtain the correlation between camera image coordinate and 3-D real world coordinate. Most calibration methods are based on the camera model which consists of physical parameters of the camera like position, orientation, focal length, etc and in this case camera calibration means the process of computing those parameters. In this research, we suggest a new approach which must be very efficient because the artificial neural network(ANN) model implicitly contains all the physical parameters, some of which are very difficult to be estimated by the existing calibration methods. Implicit camera calibration which means the process of calibrating a camera without explicitly computing its physical parameters can be used for both 3-D measurement and generation of image coordinates. As training each calibration points having different height, we can find the perspective projection point. The point can be used for reconstruction 3-D real world coordinate having arbitrary height and image coordinate of arbitrary 3-D real world coordinate. Experimental comparison of our method with well-known Tsai's 2 stage method is made to verify the effectiveness of the proposed method.

  • PDF

Genetic diversity and relationship analyses of the Korea native black goat line using microsatellite markers

  • Ho-Chan, Kang;Kwan-Woo, Kim;Eun-Ho, Kim;Cheol-Hyun, Myung;Jung-Gyu, Lee;Hyun-Tae, Lim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.693-702
    • /
    • 2021
  • The aim of this study was to analyze the genetic diversity and distance of the Korean native black goat line. Thus far, this Korean native black goat line has not been studied intensively, especially in genetic diversity and relationship studies in comparison with other breeds. In total, eleven microsatellite (MS) markers were used to evaluate alleles from 391 Korean native black goats and foreign hybrid animals. The genetic diversity index was evaluated based on the allele distributions. Four Korean native black goat lines showed expected ranges of observed heterozygosity, expected heterozygosity, and polymorphism information content (PIC) values for use in genetic diversity research (0.509 - 0.643, 0.434 - 0.623 and 0.356 - 0.567). Lines from the Korean native black goat and foreign hybrid were clearly separated according to principal coordinates analysis (PCoA), phylogenetic tree and tended to be clustered in each Korean native black goat line. Thus, this study can be used for analyzing the genetic relationships between Korean native black goats and foreign breeds for line preservation and for fundamental information to determine breed improvement strategies.

A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System (POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교)

  • Jae Kwon Eem
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

Comparison of LiDAR Data Accuracy Using CORS (상시관측소를 이용한 LiDAR 데이터 정확도 비교)

  • Kang, Joon-Mook;Won, Jae-Ho;Kim, Tae-Hoon;Hong, Yong-Hyun;Lee, Gun-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.479-484
    • /
    • 2010
  • In the airborne laser survey with GPS/INS, based on kinematic, the installation and operation of GPS base stations is necessary to allow three-dimensional location coordinates to be obtained quickly and precisely. However, in many cases, GPS base stations operate under difficult conditions. In this paper, we investigate the substitutability of continuously operating reference stations (CORS) for base stations, and we examine the influence of the distance between aircraft GPS and CORS on the Z-value. The results of our study demonstrate that, if the performance of GPS base stations within regulation distance is replaced with that of CORS, sufficient accuracy is guaranteed. Moreover, the performance of CORS beyond regulation distance is fairly good.

Analysis on Setup Variation According to Megavoltage Computed Tomography System

  • Kim, Sun-Yung;Kim, Hwa-Sun;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.425-430
    • /
    • 2016
  • The aim of this study was to measure the setup variation for X (lateral), Y (longitude), and Z (vertical) by taking magnetic megavoltage computed tomography (MVCT) before treating the brain, oropharynx, lung, and prostate patients on helical tomotherapy. In this study, 30 patients were chosen for each of the treatment areas, and their skin was labeled with a mark on a treatment planning reference point when taking CT. We preceded MVCT prior to tomotherapy and then conducted an auto registration based on the bony landmarks; image registration was used for automatically matching the patient's setup. Lastly, we confirmed and evaluated the translation coordinates of the images for 30 patients. The following shows the comparison result of the setup errors of each part: X (lateral) showed the highest setup errors with $3.44{\pm}2.05$ from Lung; Y (longitude) showed the highest setup errors showing $3.40{\pm}2.87mm$ from Prostate; and Z (vertical) showed the highest setup errors showing $6.62{\pm}4.38mm$ from Lung. This result verifies that the setup error can be prevented by taking MVCT before the treatment, and Planning Target Volume (PTV) margins can be reduced by referring to the resulting value of each treatment part. Ultimately, the dosage of the normal organs can be decreased as well as any side effects.