Browse > Article
http://dx.doi.org/10.7744/kjoas.20210058

Genetic diversity and relationship analyses of the Korea native black goat line using microsatellite markers  

Ho-Chan, Kang (Institute of Agriculture and Life Science, Gyeongsang National University)
Kwan-Woo, Kim (Animal Genetics Resources Research Center, National Institute of Animal Science, RDA)
Eun-Ho, Kim (Department of Animal Science, Gyeongsang National University)
Cheol-Hyun, Myung (Department of Animal Science, Gyeongsang National University)
Jung-Gyu, Lee (Institute of Agriculture and Life Science, Gyeongsang National University)
Hyun-Tae, Lim (Institute of Agriculture and Life Science, Gyeongsang National University)
Publication Information
Korean Journal of Agricultural Science / v.48, no.4, 2021 , pp. 693-702 More about this Journal
Abstract
The aim of this study was to analyze the genetic diversity and distance of the Korean native black goat line. Thus far, this Korean native black goat line has not been studied intensively, especially in genetic diversity and relationship studies in comparison with other breeds. In total, eleven microsatellite (MS) markers were used to evaluate alleles from 391 Korean native black goats and foreign hybrid animals. The genetic diversity index was evaluated based on the allele distributions. Four Korean native black goat lines showed expected ranges of observed heterozygosity, expected heterozygosity, and polymorphism information content (PIC) values for use in genetic diversity research (0.509 - 0.643, 0.434 - 0.623 and 0.356 - 0.567). Lines from the Korean native black goat and foreign hybrid were clearly separated according to principal coordinates analysis (PCoA), phylogenetic tree and tended to be clustered in each Korean native black goat line. Thus, this study can be used for analyzing the genetic relationships between Korean native black goats and foreign breeds for line preservation and for fundamental information to determine breed improvement strategies.
Keywords
genetic diversity; genetic relationship; Korean native black goat; microsatellite (MS) marker;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Blott SC, Williams JL, Haley CS. 1999. Discriminating among cattle breeds using genetic markers. Heredity 82:613-619.    DOI
2 Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32:314-331. 
3 Choy YH, Seo JH, Park B, Lee SS, Choi JW, Jung KS, Kong HS. 2015. Studies on genetic diversity and phylogenetic relationships of Chikso (Korea native brindel cattle) using the microsatellite marker. Journal of Life Science 25:624-630. [in    DOI
4 Ciampolini R, Moazami-Goudarzi K, Vaiman D, Dillmann C, Mazzanti E, Foulley JL. 1995. Individual multilocus genotypes using microsatellite polymorphisms to permit the analysis of the genetic variability within and between Italian beef cattle breeds. Journal of Animal Science 73:3259-3268.    DOI
5 Delgado JV, Martinez AM, Acosta A, Alvarez LA, Armstrong E, Camacho E, Canon J, Cortes O, Dunner S, Landi V, et al. 2011. Genetic characterization of Latin-American Creole cattle using microsatellite markers. Animal Genetics 43:2-10. 
6 Dieringer D, Schltterer C. 2003. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Molecular Ecology Resources 3:167-169. 
7 Felsenstein J. 2004. A package of programs for inferring phylogenies (version 3.63). Accessed in http://evolution.gs.washington.edu/phylip.html on on 18 January 2021. 
8 Fernandez ME, Goszczynski DE, Liron JP, Villegas-Castagnasso EE, Carino MH, Ripoli MV, Rogberg-Munoz A, Posik DM, Peral-Garcia P, Giovambattista G. 2013. Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and assessment of parentage in an inbred Angus herd. Genetics and Molecular Biology 36:185-191. 
9 Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Accessed in https://www2.unil.ch/popgen/softwares/fstat.htm on 14 August 2005. 
10 Huson HD, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23:254-267.    DOI
11 Kim HJ, Kim HJ, Jang A. 2019. Nutritional and antioxidative properties of black goat meat cuts. Asian-Australas. Journal of Animal Science 32:1423-1429.    DOI
12 Lee BJ, Eo SH. 2016. Current trends in forest science research using microsatellite markers in Korean national journals. Korean Journal of Agricultural Science 43:221-231. [in    DOI
13 Kim HR, Lee JW, Go MJ, Park JE, Kim MJ, Baek YC, Park SH, Lem DJ, Lee SD, Choi BH. 2020. Development of a new microsatellite markers for individual identification and paternity evaluation in Hanwoo. Journal of Agriculture & Life Science 54:75-83. [in    DOI
14 Kim JH, Byun MJ, Ko YG, Kim SW, Do YJ, Kim MJ, Yoon SH, Choi SB. 2012. Phylogenetic analysis of Korean native goats based on the mitochondrial cytochrome b Gene. Journal of Animal Science and Technology 54:241-246. [in Korean]    DOI
15 Kim JH, Cho CY, Choi SB, Cho YM, Yeon SH, Yang BS. 2011. mtDNA diversity and phylogenetic analysis of Korean native goats. Journal of Life Science 21:1329-1335. [in    DOI
16 Lee KW, Oh JD, Lee JA, Cho KY, Nam IS, Lee JE, Seo OK, Jeon GJ, Lee HK, Kong HS. 2010. Estimation of genetic characteristic and cumulative power of discrimination using the microsatellite markers in Korean native chicken. Korean Journal of Poultry Science 37:81-87. [in    DOI
17 Lee SH, Kang HC, Lee SS, Lee J, Kim EH, Myung CH, Kim KW, Lim HT. 2020. Development of a microsatellite marker set for the individual identification and parentage verification of Korean native black goats. Korean Society of Life Science 30:912-918. [in 
18 Loftus RT, Ertugrul O, Harba AH, El-Barody MAA, MacHugh DE, Park SDE, Bradley DG. 1999. A microsatellite survey of cattle from a centre of origin: The near east. Molecular Ecology 8:2015-2022.    DOI
19 MacHugh DE, Bradley DG. 2001. Livestock genetic origins: Goats buck the trend. Proceedings of the National Academy of Sciences of the United States of America 98:5382-5384.    DOI
20 Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7:639-655.    DOI
21 Martin-Burriel I, Garcia-Muro E, Zaragoza P. 1999. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Animal Genetics 30:177-182.    DOI
22 Moazami-Goudarzi K, Laloe D, Furet JP, Grosclaude F. 1997. Analysis of genetic relationships between 10 cattle breeds with 17 microsatellites. Animal Genetics 28:338-345.    DOI
23 Nei M. 1972. Genetic distance between populations. The American Naturalists 106:283-292.    DOI
24 Park BY, Kim YS, Seong J, Kong HS. 2019. Analysis of genetic diversity and relationships of Korean native black goat using microsatellite markers. The Korean Society of Animal Reproduction and Biotechnology 34:183-189. [in Korean]    DOI
25 Peakall R, Smouse PE. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology 6:288-295.    DOI
26 Peelman LJ, Mortiaux F, Van Zeveren A, Dansercoer A, Mommens G, Coopman F, Bouquet Y, Burny A, Renaville R, Portetelle D. 1998. Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Animal Genetics 29:161-167.    DOI
27 Porter V. 1996. Goats of the world. Farming Press, Ipswich, UK. 
28 Raymond M, Rousset F. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86:248-249.    DOI
29 Ruane J. 1999. A critical review of the value of genetic distance studies in conservation of animal genetic resources. Journal of Animal Breeding and Genetics 116:317-323.    DOI
30 Saitou N, Nei M. 1997. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425. 
31 Schmid M, Saitbekova N, Gaillard C, Dolf G. 1999. Genetic diversity in Swiss cattle breeds. Journal of Animal Breeding and Genetics 116:1-8.    DOI
32 Son YS. 1999. Production and uses of Korean native black goat. Small Ruminant Research 34:303-308.    DOI
33 Suh S, Cho CY, Kim JH, Choi SB, Kim YS, Kim H, Seong HH, Lim HT, Cho JH, Ko YG. 2013. Analysis of genetic characteristics and probability of individual discrimination in Korean indigenous chicken brands by microsatellite marker. Journal of Animal Science and Technology 55:185-194. [in    DOI
34 Suh SW. 2014. Molecular genetic evaluation of Korean domestic animal genetic resources using microsatellite markers. Ph.D. dissertation, Gyeongsang National Univ., Jinju, Korea. 
35 Suh SW, Byun MJ, Kim YS, Kim MJ, Choi SB, Ko YG, Kim DH, Lim HT, Kim JH. 2012. Analysis of genetic diversity and relationships of Korean native goat populations by microsatellite markers. Journal of Life Science 22:1493-1499. [in    DOI
36 Suh SW, Cho CY, Byun MJ, Choi SB, Kim YS, Kim MJ, Ko YG, Kim DH, Lim HT, Kim JH. 2014. Establishment of a microsatellite marker set for individual identification in goat. Journal of Agriculture & Life Science 48:157-164. [in Korean] 
37 Suh SW, Cho CY, Kim YS, Byun MJ, Choi SB, Cho YM, Bae KH, Kim JH. 2015. Molecular genetic considerations of Jeju black cattle using micrisatellite markers. Journal of Agriculture & Life Science 49:57-65. [in Korean]
38 Takezaki N, Nei M. 1996. Genetic distances and reconstruction of phylogenetic tree from microsatelltie DNA. Genetics 144:389-399.    DOI
39 Weir BS, Hill WG. 2002. Estimating F-statistics. Annual Review of Genetics 36:721-750.    DOI
40 Tautz D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17:6463-6471.    DOI
41 Yang DY. 2018. Study on the genetic polymorphism of Hanwoo using MS marker information. Ph.D. dissertation, Hankyoung National Univ., Anseong, Korea. 
42 Zeder MA, Hesse B. 2000. The initial domestication of goats (Capra hircus) in the Zagros Mountain 10,000 years ago. Science 287:2254-2257.   DOI