• Title/Summary/Keyword: Compaction direction

Search Result 30, Processing Time 0.026 seconds

Effect of Cold Cyclic Compaction on Densification of $Al_2O_3$ Powder/SiC Whisker Composite ($Al_2O_3$분말과 SiC 휘스커 복합체의 치밀화에 미치는 상온 반복 압축의 영향)

  • 최승완;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.296-302
    • /
    • 1997
  • The effect of cold cyclic compaction on densification of SiC whisker/Al2O3 composite was investigated. Re-lative density of the compact increased as the number of cycle and the compaction pressure increased and the bias pressure decreased. The rate of loading and unloading and the frequency of cold cyclic compaction did not affect much on sliding and rearrangement of the particles. Fracture of SiC whisker was hardly ob-served during cold cyclic compaction and the direction of whisker was randomly oriented throughout the compact regardless of the direction of compaction. Thus, cold cyclic compaction may be an efficient method to densify SiC whisker/Al2O3 composite.

  • PDF

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Evaluation of Compaction Impact According to Compaction Roller Operating Conditions through CMV Analysis (CMV 분석을 통한 다짐롤러 운용 조건에 따른 다짐 영향 평가)

  • Kim, Jinyoung;Baek, Sungha;Kim, Namgyu;Choi, Changho;Kim, Jisun;Cho, Jinwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.11-16
    • /
    • 2022
  • The compaction process using vibrating rollers in road construction is essential to increase soil stiffness in earthworks. Currently, there is no clear standard for the operation method of the compaction roller during compaction. Although simple quality inspection techniques have been developed, plate load test (PLT) and field density test (FDT) are the most frequently used test methods to evaluate the degree of compaction during road construction as the most frequently used quality inspection methods. However, both inspection methods are inefficient because they cannot perform quality inspection in all sections due to time and cost reasons. In this study, we analyzed how the operating conditions of vibrating rollers affect the compaction quality. An intelligent quality management system, which is a currently developed and commercialized technology, was used to obtain quality inspection results in all sections. As a result of the test, it was analyzed that the speed and vibration direction of the compaction roller had an effect on the compaction degree, and it was found that the compaction direction had no effect on the compaction degree.

Effect of Overburden Stress on Bulb Shapes of Horizontal Compaction Grout in Loose Sand: 2D-scaled Experimental Study (상부 응력이 수평 압밀 그라우팅 구근 형상에 미치는 영향: 2차원 축소 모형 실험 연구)

  • Joo, Hyun-Woo;Baek, Seung-Hun;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.107-116
    • /
    • 2020
  • The compaction grouting technique is widely used to improve the liquefaction resistance of loose sands that are liquefaction-prone. Particularly, the horizontal injection of compaction grout is proposed for the liquefiable ground with an overlying structure as it does not allow the vertical compaction grouting. However, there has been limited number of researches on the horizontal compaction grouting. Therefore, this study explores the grout bulb shape and expansion direction in loose sand. A series of scaled two-dimensional experiments on the horizontal compaction grouting was conducted varying the overburden stress. The results show that the grout bulb grows in an elliptical shape though its directivity of major axis changes with the overburden effective stress and relative density. The grout bulb expands faster in a horizontal direction under a low overburden stress with a small relative density. The higher overburden stress and the greater relative density cause the more circular shape with the faster expansion in a vertical direction. The presented finding is expected to contribute to accurate and efficient design of the horizontal compaction grouting method.

Analysis of the Demage of Structures by Dynamic Compaction (동다짐에 의한 인접구조물 피해 분석)

  • Song, Jeong-Rak;Han, Wan-Gyun;Sin, Seung-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.55-72
    • /
    • 1993
  • Dynamic compaction may cause some demages to structures becasue it uses the impact energy of heavy weight with high drop height. This study measured and analyzed the vibrations at the (bnamic compaction site which was composed of man-made land fill. From the vibration analysis, it was found that the particle velocity and attenuation was greatest in longitudinal direction and smallest in transversal direction, the dominant frequency ranged from 7 Hz to 9 Hz and the structural damage could be prevented by reducing the drop height at the vicinity of the vibration sentialive structures. Also, the damage to the office equipment could be prevented by doing the dynamic compaction work curing closed-office hours.

  • PDF

A Study on the Vibration Effect by Dynamic Compaction Method at Waste Landfill (폐기물 매립지반에서 동다짐공법에 의한 진도영향에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.141-148
    • /
    • 2001
  • Dynamic compaction is the ground improvement method by applying the impact energy. This impact energy can damage to adjacent structure in urban area. Therefore, if dynamic compaction method is applied, careful attention should be payed to surrounded structures. In this study, the method was performed in waste landfill and the frequency of vibrations were measured according to each distances, drop-heights, and vibrating directions. The measured data show that particle velocity bas low frequency and it is greatest in longitudinal direction. There was little differences between Maynes suggestion and measured data. Therefore, Maynes suggestion can be adopted if the range of vibration can be predicted. Also, It was found that minimum 45m distance is needed in order to satisfy the administrative code if dynamic compaction method is applied.

  • PDF

Study of the Anisotropy of the Roller Compacted Concrete (RCC) for Pavement

  • Zdiri, Mustapha;Abriak, Nor-edine;Ouezdou, Mongi Ben;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • The roller compacted concrete (RCC) is supposed to be isotropic, whereas the compaction of this material, which is achieved using the same machines used for the soil, appears only unidirectional, making the RCC an anisotropic material. In this experimental work, the influence of the phenomenon of compaction on the isotropy of the RCC is studied. This study was carried out through an evaluation of the compressive strengths and ultrasonic tests which were used for measurements of the elastic modulus and the dynamic Poisson's ratio of the RCC as well as a qualitative judgement of the RCC aspect at the hardened state. The results of this work proved the anisotropy of the RCC and they showed the sensitivity of the mechanical strengths and the elastic modulus to the compaction direction.

Field experimental study for layered compactness of subgrade based on dimensional analysis

  • Han, Dandan;Zhou, Zhijun;Lei, Jiangtao;Lin, Minguo;Zhan, Haochen
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.583-598
    • /
    • 2022
  • The Compaction effect is important for evaluating the subgrade construction. However, there is little research exploring the compaction quality of deep soil using hydraulic compaction. According to reinforcement effect analysis, dimensional analysis is adopted in this work to analyze subgrade compactness within the effective reinforcement depth, and a prediction model is obtained. A hydraulic compactor is then employed to carry out an in-situ reinforcement test on gravel soil subgrade, and the subgrade parameters before and after reinforcement are analyzed. Results show that a reinforcement difference exists inside the subgrade, and the effective reinforcement depth is defined as increasing compactness to 90% in the depth direction. Layered compactness within the effective reinforcement depth is expressed by parameters including the drop distance of the rammer, peak acceleration, tamping times, subgrade settlement, and properties of rammer and filler. Finally, a field test is conducted to verify the results.

Effect of Surrounding Soil Properties on the Attenuation of the First Guided Longitudinal Wave Mode Propagating in Water-filled, Buried Pipes (주변 흙의 특성이 물이 찬 매립된 배관에서 전파되는 기본 유도 종파 모드 감쇠에 미치는 영향)

  • Lee, Ju-Won;Na, Won-Bae;Shin, Sung-Woo;Kim, Jae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.32-37
    • /
    • 2010
  • This study presents the attenuation characteristics of the first guided longitudinal wave mode propagating in water-filled, buried steel pipes in order to investigate the effects of soil saturation and compaction on the attenuation patterns. For numerical calculation of attenuation, 10 different combinations of S-wave velocity, P-wave velocity, and soil densities were considered. From the attenuation dispersion curves, which were obtained using Disperse software, we determined that the attenuation decreases as saturation increases, whereas it increases as compaction increases. Over the frequency range from 0.2 to 0.4 MHz, the first longitudinal wave mode has attenuations that are relatively lower than for other ranges, is faster than the first flexural wave mode, and is sensitive to defects aligned in the axial direction. Hence, the first longitudinal wave mode over the mentioned frequency range would be the proper choice for long-range buried pipelines that transport water.

Derivation of constitutive equations of loose metal powder to predict plastic deformation in compaction (자유분말금속 압축시 소성변형예측을 위한 구성방정식의 유도)

  • Kim, Jin-Young;Park, Jong-jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.444-450
    • /
    • 1998
  • In the present investigation, it is attempted to derive a yield function and associated flow rules of loose metal powders to predict plastic deformation and density change during compaction. The loose metal powders yield by shear stress as well as hydrostatic stress and the yield strength is much smaller in tension than compression. Therefore, a yield function for the powders is expressed as a shifted ellipse toward the negative direction in the hydrostatic stress axis in the space defined by the two stresses. Each of parameters A, B and .delta. used in the yield function is expressed as a function of relative density and it is determined by uniaxial strain and hydrostatic compressions using Cu powder. Flow rules obtained by imposing the normality rule to the yield function are applied to the analyses of unidirectional, bidirectional and hydrostatic compressions, resulting in an excellent agreement with experiments. The yield function is further examined by checking volume changes in plane stain, uniaxial strain and shear deformations.