• Title/Summary/Keyword: Compaction Density

Search Result 421, Processing Time 0.031 seconds

Method for the Evaluation of Strength Parameter from the Void Ratio of Decomposed Granite Soil after Compaction Using Preconsolidation Theory (선행압축이론을 이용한 화강풍화토의 다짐 후의 간극비로부터 지반강도정수 추정 방법)

  • Ham, Tae-Gew
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.89-99
    • /
    • 2009
  • In order to clarify the relation between the physical properties and the strength parameters of compaction materials and to develop a method for evaluating the strength parameters required for design from the physical indices including void ratio and dry density, compaction test, one-dimensional compression test, and exhausted-drained triaxial compression test were carried out with decomposed granite soils. The test results showed that the specimens became over-consolidated by compaction and the increase of the strength parameters of the specimens by the increase of the compaction energy could be verified quantitatively. A method for the evaluation of strength parameters from the void ratio of soil after compaction using preconsolidation theory which evaluates over-consolidation of materials was developed and its engineering applicability was tested for verification.

Manufacturing and Evaluation of the Properties of Hybrid Bulk Material by Shock-compaction of Nanocrystalline Cu-Ni Mixed Powder (나노 구리-니켈 혼합분말의 충격압축법을 통한 복합벌크재의 제조 및 특성평가)

  • Kim, Wooyeol;Ahn, Dong-Hyun;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • In this study, nanocrystalline Cu-Ni bulk materials with various compositions were cold compacted by a shock compaction method using a single-stage gas gun system. Since the oxide layers on powder surface disturbs bonding between powder particles during the shock compaction process, each nanopowder was hydrogen-reduced to remove the oxide layers. X-ray peak analysis shows that hydrogen reduction successfully removed the oxide layers from the nano powders. For the shock compaction process, mixed powder samples with various compositions were prepared using a roller mixer. After the shock compaction process, the density of specimens increased up to 95% of the relative density. Longitudinal cross-sections of the shock compacted specimen demonstrates that a boundary between two powders are clearly distinguished and agglomerated powder particles remained in the compacted bulk. Internal crack tended to decrease with an increase in volumetric ratio of nano Cu powders in compacted bulk, showing that nano Cu powders has a higher coherency than nano Ni powders. On the other hand, hardness results are dominated by volume fraction of the nano Ni powder. The crystalline size of the shock compacted bulk materials was greatly reduced from the initial powder crystalline size since the shock wave severely deformed the powders.

Green Machining of the Warm Compacted Sinter Hardenable Material

  • Cheng, Chao-Hsu;Chiu, Ken;Guo, Ray
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.295-296
    • /
    • 2006
  • High hardness of P/M parts can be obtained in the cooling section of the sintering furnace by using sinter hardenable materials, thus the post-sintering heat treatment can be eliminated. However, the sinter hardened materials would have difficulties in secondary machining if it is required, which will limit the applications of sinter hardenable materials in the machined parts. Recent development in warm compaction technology can enable us not only to achieve the high green density up to $7.4\;g/cm^3$, but also the high green strength which is needed for green machining. Therefore by using warm compaction technology, the green machining can be applied to sinter hardenable materials for the high density, strength and hardness P/M parts. In the present study, a pre-alloyed steel powder, ATOMET4601, was used by mixing with 2.0% copper, 1.0% nickel, 0.9% graphite and a proprietary lubricant using a binder treatment process - FLOMET. The specimens were compacted and green machined with different machining parameters. The machined surface finish and part integrity were evaluated in selecting the optimal conditions for green machining. The possibility of applying the green machining to the high-density structural parts was explored.

  • PDF

Analysis of Technical Problem for Soil Compaction by Gyratory Compactor (선회다짐기를 이용한 흙의 다짐시 기술적 문제 분석)

  • Lee, Kwan-Ho;Jang, Tae-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • Proctor test A or D method of compaction is the most common laboratory test for investigation of subgrade soil characteristics, however, compression type using roller is used in the field. The differences between laboratory and field compaction have considerable error as application to subgrade soil properties of laboratory test. The investigation of compacted soil is carried into effect to solve the problem. The gyratory compactor which is made to reproduce the field density of asphalt mixture, coming from traffic loads, has an advance to compact it similar to arrangement of field aggregate particles. This gyratory compactor has several problems of investigation of compacted soil, because it has designed to make initial asphalt specimens. The main objectives of this research are grasping problems when compacted soil test using the gyratory compactor and showing solutions. It has made a comparative study of difference of the percentage of water content and weight, which are before and after compaction, about the pressure of compaction, frequency of compaction and speed of compaction. And it also has investigated finding maximum percentage of water content which not occur change of percentage of water content after compaction and searching how has an effect on drawing compaction curve.

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

Sintering Characterization of Alumina Powders by Hot Pressing after Cold Cyclic Compaction -Densification, Grain-Growth and Fracture Toughness- (상온 반복압축 후 가압소결에 의한 알루미나 분말의 소결특성 -치밀화와 결정립 성장 및 파괴인성-)

  • Son, G.S.;Suh, J.;Baik, S.K.;Kim, K.T.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.62-68
    • /
    • 1993
  • Densification of alumina powder, grain size and fracture toughness of sintered body by hot pressing after cold compaction were investigated and compared to traditional hot pressing process (without cold cyclic compaction). To achieve a higher densification and to reduce the hot pressing time, hot pressing after cold cyclic compaction was more efficient compared to traditional hot pressing. This phenomenon resulted from the increment of packing densityby the acceleration fo rearrangement of powders under cold cyclic compaction. The grain size of sintered body was only dependent on relative density, and densification during hot pressing was governed by thelattice diffusion. Comprisons of grain size, densification mechanism and fracture toughness resulted from hot pressing after/without cold cyclic compaction showed that a low cyclic pressure may not effect on the fragmentation of alumina powders.

  • PDF

Investigation of Domestic Application for Soil Impact Hammer(SIH) (동적 지반물성측정장치(SIH, Soil Impact Hammer)의 국내 적용성 평가)

  • 박재영;석정우;황대진;양구승
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.411-418
    • /
    • 2002
  • In domestic road construction sites, the compaction control based on strength are widely performed through the direct method with high accuracy, such as Plate Loading Test or Field CBR test. It is impossible to manage all construction sites using the direct method because the direct method requires heavy reaction loads and long measurement time. Therefore, it is necessary to apply the indirect method that could control the relative density of construction sites on the whole. Indirect methods, such as Cone Penetration Test and Fall Cone Test, require extra time for data analyzing and fixed area for test device. In this paper, the field applicability of Soil Impact Hammer (SIH) was investigated comparing with the results of field measurement tests and laboratory compaction tests. SIH developed by Japan Construction Administration and Asanuma Ltd., is a kind of indirect methods for compaction checking. According to the results of SIH performed in domestic road construction site, the subgrade reaction modulus obtained from SIH are similar to that from Plate loading tests in the range of 10 to 40. In comparison with laboratory compaction test, similar compaction line are shown in the dry side of optimum moisture contents.

  • PDF

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF

Pellet Fuel from Wood Biomass (목질바이오매스를 이용한 펠릿연료의 제조)

  • Han, Gyu-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.521-524
    • /
    • 2006
  • Recently, densified pollet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of several species of wood to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess pellet fuels Hot-press process was adopted for compact ion of sawdust and compaction was performed under prescribed condition. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over $1.2g/cm^3$ and below 0.5%, respectively. When the press-temperature is over $60^{\circ}C$ densified fuels with density over $1.2g/cm^3$ and with fines below 0.5% can be produced. And the pressure over $1000kgf/cm^2$ was effect ive for this production.

  • PDF

Earth Pressures Acting on the Rigid Wall under Incremental Load (점증하중에 의한 강성벽체에 작용하는 토압)

  • Chon, Yong-Baek;Kwon, Uk-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.247-254
    • /
    • 2002
  • This study has researched the following conclusion to compare to the existing theory and to examine lateral earth pressure, which have measured to add incremental load on sandy soil, and were different in types of compaction by modeling earth pressure test. Lateral earth pressure by incremental load shows that it is increasing at depth forty four centimeters as 2/3H point for wall high, and under 2/3 H point the variation of earth pressure on incremental load is not conspicuous. Therefor, the more a position of surcharge load is close with fixed wall, the more a variation of lateral earth pressure marks considerably. According to relative compaction density of soil, lateral earth pressure turns up larger effective value for layer compaction test to a thickness of thirty three centimeters than layer compaction test to a thickness of twenty centimeters by the roller.

  • PDF