• Title/Summary/Keyword: Compactifications

Search Result 15, Processing Time 0.021 seconds

Survey of the Arithmetic and Geometric Approach to the Schottky Problem

  • Jae-Hyun Yang
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.647-707
    • /
    • 2023
  • In this article, we discuss and survey the recent progress towards the Schottky problem, and make some comments on the relations between the André-Oort conjecture, Okounkov convex bodies, Coleman's conjecture, stable modular forms, Siegel-Jacobi spaces, stable Jacobi forms and the Schottky problem.

순서와 위상구조의 관계

  • 홍성사;홍영희
    • Journal for History of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.19-32
    • /
    • 1997
  • This paper deals with the relationship between the order structure and topological structure in the historical point of view. We first investigate how the order structure has developed along with the set theory and logic in the second half of the nineteenth century. After the general topology has emerged in the beginning of the twentieth century, two disciplines of the order theory and topology give each other a great deal of effect for their development via various dualities, compactifications by maximal filter spaces and Alexandroff's specialization order, which form eventually a fundamental setting for the development of the category theory or functor theory.

  • PDF

SOME CHARACTERIZATIONS OF SINGULAR COMPACTIFICATIONS

  • Park, Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.943-947
    • /
    • 1995
  • Assume that X is locally compact and Hausdorff. Then, we show that $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if for any 2-point compatification $\gamma X$ of X with $\gamma X - X = {-\infty, +\infty}$, there exists a clopen subset A of \gamma X$ such that $-\infty \in A$ and $+\infty \notin A$. As a corollary, we obtain that if X is connected and locally connected, then $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if X is 1-complemented.

  • PDF

ON THE TOPOLOGY OF DIFFEOMORPHISMS OF SYMPLECTIC 4-MANIFOLDS

  • Kim, Jin-Hong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.675-689
    • /
    • 2010
  • For a closed symplectic 4-manifold X, let $Diff_0$(X) be the group of diffeomorphisms of X smoothly isotopic to the identity, and let Symp(X) be the subgroup of $Diff_0$(X) consisting of symplectic automorphisms. In this paper we show that for any finitely given collection of positive integers {$n_1$, $n_2$, $\ldots$, $n_k$} and any non-negative integer m, there exists a closed symplectic (or K$\ddot{a}$hler) 4-manifold X with $b_2^+$ (X) > m such that the homologies $H_i$ of the quotient space $Diff_0$(X)/Symp(X) over the rational coefficients are non-trivial for all odd degrees i = $2n_1$ - 1, $\ldots$, $2n_k$ - 1. The basic idea of this paper is to use the local invariants for symplectic 4-manifolds with contact boundary, which are extended from the invariants of Kronheimer for closed symplectic 4-manifolds, as well as the symplectic compactifications of Stein surfaces of Lisca and Mati$\acute{c}$.

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF