• Title/Summary/Keyword: Compact Mode

Search Result 242, Processing Time 0.03 seconds

An Implementation Method of Frequency Offset Synchronization Using Compact CORDIC for OFDM Systems (OFDM 시스템에서 Compact CORDIC을 이용한 주파수 오프셋 동기화 구현 기법)

  • Lee Kyu-In;Yu Sung-Wook;Kim Jong-Han;Lee Jae-Kon;Cho Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.706-712
    • /
    • 2006
  • In this letter, we propose a compact CORDIC processor for implementation of carrier frequency synchronization block in an OFDM (Orthogonal Frequency Division Multiplexing) system. The compact CORDIC processor is proposed by using inherenct properties of an OFDM system for estimation and compensation of carrier frequency offset, and is composed of a compact CORDIC preprocessor and a compact CORDIC processor. The compact CORDIC preprocessor plays a role of normalizing input signal efficiently, and the compact CORDIC processor is proposed to perform the vectoring mode and rotational mode jointly in CORDIC operation for carrier frequency synchronization. It is shown by FPGA implementation that the proposed compact CORDIC processor can achieve better performance with a significantly reduced hardware complexity than the conventional CORDIC approach.

Novel Compact Bandpass Filter Based on Folded Half Mode Substrate Integrated Waveguide Cavities

  • Gong, Ke;Hong, Wei;Chen, Jixin;Tang, Hongjun;Hou, Debin;Zhang, Yan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.179-182
    • /
    • 2010
  • This paper proposed a novel compact bandpass filter with folded half mode substrate integrated waveguide (FHMSIW) cavities using two-layer printed circuit board(PCB) process. The area of the FHMSIW filter is reduced by nearly 50 % and 75 % compared with half mode substrate integrated waveguide(HMSIW) filter and substrate integrated waveguide(SIW) filter, respectively. A four-pole Chebyshev FHMSIW bandpass filter at C-band has been designed, simulated and fabricated. Measured results are presented and found to agree with the full-wave simulated results by using Ansoft HFSS. The filter shows good performance and compact size.

Compact Triple-Mode Resonator and Triple-Mode Filter Design (소형의 삼중 모드 공진기와 삼중 모드 필터 설계)

  • Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.447-452
    • /
    • 2011
  • In this paper, we present a compact triple-mode resonator. The resonator itself can provide three transmission poles and one transmission zero. The resonance condition of each mode is analyzed theoretically, and the transmission zero is generated by open stub. Using this proposed resonator, a compact three pole bandpass filter for 2.4 GHz WLAN application with one transmission zero is designed and fabricated. The fabricated triple-mode filter shows 3 dB bandwidth of 15.8 % with the center frequency 2.4 GHz and less then 1.17 dB in 2.4~2.5 GHz passband. The size of fabricated triple-mode filter including the feed lines is 15.9 mm${\times}$9.7 mm and very compact compared with previous reported triple-mode filter.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

An Experimental Study on the Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하의 피로균열 전파거동에 관한 실험적 연구)

  • Song, Sam-Hong;Lee, Jeong-Moo;Hong, Suck-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.119-124
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode I+II state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I loading overloading afterwards. We examined the observed deformation aspects, variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. It has been confirmed that the retardation behavior did not immediately appear and the retardation length was short when the component of mixed-mode overload was changed.

  • PDF

Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks (전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향)

  • 이정무;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

A 3.3-V Low-Power Compact Driver for Multi-Standard Physical Layer

  • Park, Joon-Young;Lee, Jin-Hee;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • A low-power compact driver for multistandard physical layer is presented. The proposed driver achieves low power and small area through the voltage-mode driver with trans-impedance configuration and the novel hybrid driver,. In the voltage-mode driver, a trans-impedance configuration alleviates the problem of limited common-mode range of error amplifiers and the area and power overhead due to pre-amplifier. For a standard with extended output swing, only current sources are added in parallel with the voltage-mode driver, which is named a 'hybrid driver'. The hybrid architecture not only increases output swing but reduces overall driver area. The overall driver occupies $0.14mm^2$. Power consumptions under 3.3-V supply are 24.5 mW for the voltage-mode driver and 44.5 mW for the hybrid driver.

Design of Compact Common Mode Noise Absorption Filter (공통 모드 노이즈를 흡수하는 소형 공통 모드 필터 설계)

  • Jung, Hyeonjong;Jung, Jinwoo;Lim, Yeongseog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.963-968
    • /
    • 2018
  • In this paper, a compact common mode filter using passive elements is designed and fabricated. To design a common mode filter with required frequency response, the equivalent circuits of the common mode filter in differential mode and common mode were analyzed. Compared with the former filter using a ${\lambda}/4$ resonator, the size of the proposed structure was reduced by 60 %. The fabricated common mode filter has a maximum differential mode insertion loss of 1.2 dB and a minimum common mode absorption efficiency of 78.2% in the CMA - bandwidth of 27.5 %.

An Experimental Study on the Fatigue Crack Propagation Behavior in CTS Specimen under Mode II Loading (모드 II 하중을 받는 CTS 시험편의 피로균열 전파거동에 관한 실험적 연구)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1217-1226
    • /
    • 2003
  • The purpose of this paper is to investigate fatigue crack behavior under shear(Mode II) loading. Various specimens and devices have been used in order to produce Mode II loading in fatigue experiments for shear crack propagation. But, there is not sufficient comparisons of experimental results between Mode II and others loading modes, because of characteristics of applied loads and specimens. So, compact tension shear(CTS) specimens were used in this paper to investigate the propagation behavior of Mode II by comparing the experimental results between loading modes. We firstly observed the characteristics which was showed in Mode II experiment using CTS specimens. The experimental results under Mode II loading were compared with fatigue crack behavior under Mode I and Mixed-mode I+II loading. The characteristics for initiation and propagation behavior under Mode II loading was investigated by such comparisons.

The Characteristics of Fatigue Crack Propagation Behavior in Shear Load (전단하중 하의 피로균열 전파거동의 특징)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF