• Title/Summary/Keyword: Commutation period

Search Result 31, Processing Time 0.022 seconds

Fast Regulation Method for Commutation Shifts for Sensorless Brushless DC Motors

  • Yao, Xuliang;Zhao, Jicheng;Wang, Jingfang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1203-1215
    • /
    • 2019
  • Sensorless brushless DC (BLDC) motor drive systems are often subjected to inaccurate commutation signals and can produce high current peaks and conduction consumption. To achieve accurate commutation, a fast commutation shift regulation method for sensorless BLDC motor drive systems considering the influence of the inductance freewheeling process is presented to compensate inaccurate commutation signals. The regulation method is effective in both steady speed and variable speed operations. In the proposed method, the commutation error is gained from the line-voltage difference integral in a 60 electrical-degree conduction period and the outgoing phase current before commutation. In addition, the detection precision of the commutation error is improved due to the consideration of the freewheeling period. The commutation error is directly obtained, which avoids successive optimization and accelerates the convergence rate of the proposed method. Moreover, the commutation error features a positive or negative sign, which can be utilized as an indicator of advanced or delayed commutation. Finally, experiments are conducted to validate the effectiveness and feasibility of the proposed method. The results obtained show that the proposed method can accurately regulate commutation signals.

A Study on the Influence of Commutation Time on Torque Pulsating in BLDCM (BLDC 모터에서 전류시간이 토크맥동에 미치는 영향에 관한 연구)

  • Kim, Cheol-Ju;Gang, Byeong-Hui;Mok, Hyeong-Su;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • A BLDC motor has a serious drawback that torque pulsation is generated in every commutation period though it has many advatages compared to the conventional DC Motor. In this paper, the influence of commutation time on torque pulsation is studied. Generally in calculating the torque of BLDC motor, it is assumed that the decaying phase back EMF is constant, but the torque model considering decaying phase back EMF is introduced here. Through it, the torque in commutation period has torque pulsation component caused by commutation itself and it cannot be removed perfectly even if there is no current pulsation. To reduce the torque pulsation, a new method is proposed, which controls a point of commutation and the optimal point of commutation is found. Simulation shows that proposed method reduces the torque pulsation considerately.

  • PDF

A study on the torque pulsation caused by commutation time in BLDC Motor (BLDC모터에서 전류시간에 의한 토크맥동에 관한 연구)

  • 강병희
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.610-614
    • /
    • 2000
  • Torque pulsation generated in every commutation period is the main drawback of BLDC motor which deteriorates the precision of BLDC motor. Many methods to solve this problem have been proposed. In this paper a new torque model considered with decaying phase back EMF is introduced and from it the cause of torque pulsation in commutation period is analyzed. Form this analysis new algorithms to reduce the torque pulsation by commutation time are proposed and with simulation the validity is verified.

  • PDF

A Study for Torque Ripple Reduction with PWM Pattern on Brushless DC Motor During Commutation (BLDC 전동기에서 PWM 방식에 따른 토크리플 저감에 관한 연구)

  • Kim, Sang-Hoon;Kwon, Kyeong-Jun
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.109-117
    • /
    • 2004
  • This paper presents a current control strategy to reduce torque ripple of Brushless DC Motor in commutation period with PWM pattern. The torque ripple is mainly caused by the inequality in the rate of change between rising current and decaying one during commutation. And also it is influenced by the shape of real back EMF. Therefore, in the proposed control strategy, considering real back EMF a compensation voltage is generated to equalize the rate of change in these commutating currents. And then, by providing the compensation voltage in commutation period with PWM pattern, the torque ripple can be reduced. The simulation and experimental results verify that the proposed method can reduce the torque and the current ripples significantly.

  • PDF

Vibration and Acoustic Noise characteristic on SRM with compensating winding by two stage commutation (2단계 소호전압방식을 적용한 보상권선형 SRM의 진동.소음특성)

  • 오석규;이종근;최태완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.250-257
    • /
    • 2001
  • SRM drives generate large vibration and acoustic noise because it is rotated by step pulse mmf and switching commutation mechanism. The main vibration source of SRM drive is generated by rapidly variation of radial force when phase winding current is extinguished for commutation action. So the rapidly variation of radial force is repressed firstly to reduce vibrating force of SRM drive. This paper suggests an SRM excitation scheme using unidirect-short compensation winding to reduce vibration of the motor. The motor is excited by a two stage commutation method during commutation period. This paper suggests an SRM excitation scheme using unidirect-short compensation winding to reduce vibration of the motor. The motor is excited by a tow stage commutation method during commutation period. This reduction effect of vibration is verified with the result obtained in the test of prototype machine.

  • PDF

Vibration and Acoustic Noise characteristic on SRM with compensating winding that two stage commutation is used at commutation action (2단계 소호전압방식을 적용한 보상권선형 SRM의 진동.소음특성)

  • Lee, Jong-Gun;Jung, Tae-Uk;An, Young-Joo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.55-57
    • /
    • 1999
  • SRM Drives generate large vibration and acoustic noise because it is rotated by step pulse mmf and switching commutation mechanism. The main vibration source of SRM Drive is generated by rapidly variation of radial force when phase winding current is extinguished for commutation action. So the rapidly variation of radial force is repressed firstly to reduce vibrating force of SRM Drive. This paper suggests the vibration reduction method that SRM Drive with unidirect-short compensation winding is excited by a two stage commutation method at commutation period. This reduction effect of vibration is verified with the result obtained in the test of prototype machine.

  • PDF

Commutation Performance of Current Source Converters fed Switched Reluctance Motors (스위치드 리럭턴스 전동기 구동 전류형 컨버터의 전류특성)

  • Jang, Do-Hyun;Choe, ㅍ;Kim, Ki-Su;Jeong, Seon-Ung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.38-46
    • /
    • 1996
  • The commutation operation of the current source converter for switched reluctance motor drives is analyzed in this paper. The commutation operation in the current source converter consists of two modes. At turn-off of phase switch, the phase current decreases sinusoidally, and the sum of two phase currents during commutation period is constant. At this time, the capacitor voltage increases quickly with changing polarity and decreases slowly when another phase switches turn on or off. Frequency of step-down DC chopper in the current source converter is low because of the dump such as BJTs and GTOs are possible as phase switches instead of Power MOSFET and IGBTS. They may result in reductions of conduction losses and manufacturing cost in the current source converter comparing to the voltage source converter of SRM.

  • PDF

Optimum Torque Control Method for BLDC Motor with Minimum Torque Pulsation (최소토크맥동을 갖는 BLDC 전동기의 최적제어)

  • 강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • This paper studies that torque model considered with decaying phase back-EMF is different In conduction and commutation period and analyzes the torque pulsation components mathematically. In this paper, it is proposed a novel method to suppress torque pulsation due to commutation time. First, it propose commutation delay time control method, which is to compensate current slope of rising phase and decaying phase to control commutation time. Current ripple is minimized at non-commutating current and torque ripple is reduced below critical speed range that dc link voltage is the same as four times of back-EMF voltage. However, torque ripple still exists due to the relation with back-EMF and commutating current and it is increased on a large scale above critical speed range, especially. Secondly, proposed method is commutation time control, which is considered with torque pulsation due to the relation of back-EMF and commutating current. Through the proposed method, the torque pulsation can be minimized in the whole speed range as well as range over critical speed.

A Study on Commutation Strategy for Torque Ripple Reduction of Brushless DC Motor (브러시리스 직류 전동기의 토크 맥동 저감을 위한 전류(轉流) 방법에 관한 연구)

  • Lee, Kwang-Woon;Jang, Won-Sik;Park, Jung-Bae;Yeo, Hyoung-Gee;Lee, In-Ho;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.497-499
    • /
    • 1997
  • The torque ripple is generated in brushless de motors due to phase commutation and cause undesirable vibrations in servo application. This paper presents a new method reduce the torque ripple of brushless dc motor in commutation period.

  • PDF

Current Compensation Scheme to Reduce Torque Ripples of Delta-connected Low-inductance BLDC Motor Drives (델타 결선형 저인덕턴스 BLDC 전동기의 토크 리플 저감을 위한 전류 보상 기법)

  • Park, Do-Hyeon;Lee, Dong-Choon;Lee, Hyong-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.449-456
    • /
    • 2017
  • This study proposes a method for compensating for the commutation torque ripple of delta-connected brushless DC motors with low inductance based on a current predictions. At the commutation instant, a phase current at the next sampling period is predicted and compared with the reference phase current to determine whether torque ripples will occur or not. If the predicted current cannot reach the reference phase current, the reference current is modified and the relevant voltage reference is produced to reduce the torque ripple. The validity of the proposed method has been verified by simulation and experimental results. The commutation torque ripple has been decreased by 17.7% at 1,000 rpm and 80% load conditions.