• Title/Summary/Keyword: Community-Level Physiological Profile

Search Result 8, Processing Time 0.029 seconds

Characteristics of Community-Level Physiological Profile (CLPP) of Biofilm Microorganisms Formed on Different Drinking Water Distribution Pipe Materials (수도관 재질에 따른 생물막 형성 미생물의 Community-Level Physiological Profile(CLPP) 특성)

  • Park, Se-Keun;Lee, Hyun-dong;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2006
  • This study investigated the physiological characteristics of biofilm microorganisms formed onto the different drinking water distribution pipe surfaces. The simulated drinking water distribution pipe system which had several PVC, STS 304, and GS coupons was operated at flow velocity of 0.08 m/sec (Re 1,950) and 0.28 m/sec (Re 7,300), respectively. At velocity of 0.08 m/sec, the number of viable heterotrophic bacteria in the biofilm over the 3 months of operation averaged $3.3{\times}10^4$, $8.7{\times}10^4$, and $7.2{\times}10^3CFU/cm^2$ for PVC, STS, and GS surfaces, respectively. The number of attached heterotrophic bacteria averaged $1.4{\times}10^3$, $5.6{\times}10^2$, and $6.5{\times}10^2CFU/cm^2$ on PVC, STS, and GS surfaces at the system with relatively high flow velocity of 0.28m/sec. The changes of physiological profile of biofilm-forming microorganisms were characterized by community-level assay that utilized the Biolog GN microplates. Biofilms that formed on different pipe surfaces displayed distinctive patterns of community-level physiological profile (CLPP), which reflected the metabolic preference for different carbon sources and/or the utilization of these carbon sources to varying degrees. The CLPP patterns have shown that the metabolic potential of a biofilm community was different depending on the pipe material. The effect of the pipe material was also characterized differently by operation condition such as flow rate. At flow velocity of 0.08 m/sec, the metabolic potential of biofilm microorganisms on GS surface showed lower levels than PVC and STS biofilms. For biofilms on pipe material surfaces exposed to water flowing at 0.28 m/sec, the metabolic potential was in order of PVC>GS>STS. Generally, the levels of the bacterial biofilm's metabolic potentials were shown to be notably higher on pipe surfaces exposed to water at 0.08 m/sec when compared to those on pipe surfaces exposed to water at 0.28 m/sec.

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters (폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용)

  • Lee, Eun-Hee;Park, Hyunjung;Jo, Yun-Seong;Ryu, Hee Wook;Cho, Kyung-Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

Analysis of Community Level Physiological Profiles in the Rhizosphere of Brassica rapa subsp. pekinensis (Brassica rapa subsp. pekinensis 근권 서식 미생물의 기질이용 활성 조사)

  • Jung, Se-Ra;Kim, Seung-Bum
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • The community size of culturable heterotrophic bacteria and community level physiological profiles (CLPP) in the rhizosphere of Brassica rapa subsp. pekinensis (Chinese cabbage) were analyzed in two different sites. The average community size of culturable heterotrophic bacteria ranged between $2.65\times10^6CFU\;g^{-1}$ soil (Suwon) and $3.75\times10^6CFU\;g^{-1}$ soil (Yesan), whereas those of bulk soils ranged between $2.45\times10^6CFU\;g^{-1}$ soil (Suwon) and $2.97\times10^6CFU\;g^{-1}$ soil (Yesan). The average functional richness of Suwon rhizoshpere was 90.8, whereas that of Yesan rhizosphere was 154.1. High level of correlation was found between the community size and functional richness. The most actively utilized substrates in both rhizospheres were adonitol, L-asparagine, D-gluconic acid, L-glutamic acid and D-galacturonic acid. Clear differences were seen in the utilization patterns between the two sites. Differences were also observed for the patterns of bulk soils between the two sites, although D-raffinose and D-mannose were found as the commonly utilized substrates.

Effect of Agricultural Practice and Soil Chemical Properties on Community-level Physiological Profiles (CLPP) of Soil Bacteria in Rice Fields During the Non-growing Season (논의 휴한기 이용형태와 토양화학성이 토양세균의 탄소원 이용에 미치는 영향)

  • Eo, Jinu;Kim, Myung-Hyun;Song, Young Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.219-224
    • /
    • 2019
  • BACKGROUND: Soil bacteria play important roles in organic matter decomposition and nutrient cycling during the non-growing season. The purpose of this study was to investigate the effects of soil management and chemical properties on the utilization of carbon sources by soil bacteria in paddy fields. METHODS AND RESULTS: The Biolog EcoPlate was used for analyzing community-level carbon substrate utilization profiles of soil bacteria. Soils were collected from the following three types of areas: plain, interface and mountain areas, which were tested to investigate the topology effect. The results of canonical correspondence analysis and Kendall rank correlation analysis showed that soil C/N ratio and NH4+ influenced utilization of carbon sources by bacteria. The utilization of carbohydrates and complex carbon sources were positively correlated with NH4+ concentration. Cultivated paddy fields were compared with adjacent abandoned fields to investigate the impact of cultivation cessation. The level of utilization of putrescine was lower in abandoned fields than in cultivated fields. Monoculture fields were compared with double cropping fields cultivated with barley to investigate the impact of winter crop cultivation. Cropping system altered bacterial use of carbon sources, as reflected by the enhanced utilization of 2-hydroxy benzoic acid under monoculture conditions. CONCLUSION: These results show that soil use intensity and topological characteristics have a minimal impact on soil bacterial functioning in relation to carbon substrate utilization. Moreover, soil chemical properties were found to be important factors determining the physiological profile of the soil bacterial community in paddy fields.

Effects of Antibiotics on the Uterine Microbial Community of Mice

  • Sang-Gyu Kim;Dae-Wi Kim;Hoon Jang
    • Development and Reproduction
    • /
    • v.26 no.4
    • /
    • pp.145-153
    • /
    • 2022
  • The gut microbiota is involved in the maintenance of physiological homeostasis and is now recognized as a regulator of many diseases. Although germ-free mouse models are the standard for microbiome studies, mice with antibiotic-induced sterile intestines are often chosen as a fast and inexpensive alternative. Pathophysiological changes in the gut microbiome have been demonstrated, but there are no reports so far on how such alterations affect the bacterial composition of the uterus. Here we examined changes in uterine microbiota as a result of gut microbiome disruption in an antibiotics-based sterile-uterus mouse model. Sterility was induced in 6-week-old female mice by administration of a combination of antibiotics, and amplicons of a bacteria marker gene (16S rRNA) were sequenced to decipher bacterial community structures in the uterus. At the phylum-level, Proteobacteria, Firmicutes, and Actinobacteria were found to be dominant, while Ralstonia, Escherichia, and Prauserella were the major genera. Quantitative comparisons of the microbial contents of an antibiotic-fed and a control group revealed that the treatment resulted in the reduction of bacterial population density. Although there was no significant difference in bacterial community structures between the two animal groups, β-diversity analysis showed a converged profile of uterus microbiotain the germ-free model. These findings suggest that the induction of sterility does not result in changes in the levels of specific taxa but in a reduction of individual variations in the mouse uterus microbiota, accompanied by a decrease in overall bacterial population density.

Age and Gender Differences in the Relationship of Cognitive Impairment, Vascular Risk Factors, and Subclinical Carotid Atherosclerosis from Community-based Elderly (나이와 성별에 따른 지역사회 거주 노인에서 무증상 경동맥 죽상경화증에 대한 혈관위험인자 및 인지장애와의 관련성)

  • Kim, Ji-Hee;Park, Hyun-Young;Kim, Dae-Won;Byun, Seung-Jae;Moon, Hyo-Jeong;Lee, In;Yang, Chung-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.399-407
    • /
    • 2012
  • To evaluate age and gender differences in the relation of cardiovascular risk factors, cognitive impairment, and subclinical carotid atherosclerosis from aged people using by a cross sectional method. Sixty-nine healthy elders living in the community who had not previously undergone carotid ultrasonography were included. We conducted life style surveys, and cognitive function tests including Korean-mini-mental state examination (K-MMSE) and clinical dementia rating-Korean. Various biomarkers from blood were assessed; fasting insulin-like growth factor-1, lipid-profile, high sensitivity C-reactive protein, total homocysteine, glucose, insulin, Homeostasis model assessment (HOMA) for insulin resistance index, vitamin B12, and folate level. Carotid intima-media thickness (C-IMT), and plaques were measured using carotid ultrasonography and aortic ultrasonography, a valid index of atherosclerosis. For the elderly subjects (aged 65-82 years), cognition impairment was more prevalent in females while subclinical atherosclerosis was more prevalentin males. Increased C-IMT has been kept in males, and C-IMT shows increasing trend and the peak at about 80 year-old in females with increasing age. The significant correlations between C-IMT and many vascular risk factors including age, triglyceride, abnormal homocysteinein male, and K-MMSE, insulin, HOMA index and abnormal aortic ultrasonography in female were different in each gender, with the exception of homocysteine (p<0.05). This data suggests that there were differences of age and gender characteristics in terms of subclinical atherosclerosis, cognitive impairment and vascular risk factors in community-living elders. Further larger and longitudinal studies across entire age are required to better understand the effects of risk factors on subclinical atherosclerosis.

Effects of Low-Calorie Diet Including High Protein-Low Carbohydrate Protein Bar on Weight Loss and Serum Lipid Indicators in Overweight Women according to Dietary Compliance (고단백 저탄수화물식 프로틴바를 이용한 저칼로리 다이어트가 순응 정도에 따라 과체중 여성의 체중감량과 혈청 지질지표에 미치는 영향)

  • Park, Dasom;Lee, Hyun Joo;Son, Sook Mee
    • Korean Journal of Community Nutrition
    • /
    • v.24 no.6
    • /
    • pp.485-496
    • /
    • 2019
  • Objectives: This study was conducted to investigate the effect of a 6-week low-calorie diet (LCD) program including high protein-low carbohydrate protein bar on weight loss, blood pressure, and blood lipid profile in 40 overweight women according to dietary compliance. Methods: Subjects were 62 healthy overweight women (BMI ≥ 23.0 or body fat percentage ≥ 28%), aged 20~59 yrs who were provided a high protein-low carbohydrate protein bar (each 35 g, 154 kcal, protein energy %: 28.6%, carbohydrate energy %: 38.7%) as part of dinner for 6 weeks. Forty subjects who completed the whole diet program were categorized into high compliance (HC) group (days of eating protein bar ≥ 5 weeks) or low compliance (LC) group (days < 5 weeks). Results: Energy intake significantly decreased from 1,867.5 kcal at baseline to 1,137.4 kcal at 6 weeks for the HC group and from 1,971.7 kcal to 1,362.2 kcal for the LC group, respectively. On the other hand, a significant increase in protein energy percentage was observed in each group (HC group: 3.5%, LC group: 2.2%). Both groups showed significant decreases in weight (HC group: 1.8 kg, LC group: 1.1 kg), BMI, fat mass, systolic blood pressure, total cholesterol, and LDL-cholesterol. Reduction of body fat percentage and diastolic blood pressure were only observed in the HC group. Conclusions: The inclusion of a high protein-low carbohydrate protein bar as part of a low-calorie diet for a short period can be effective to achieve weight loss and concomitantly improve blood cholesterol level without serious physiological side effects. More evident results can be achieved by eating a diet with low calorie diet including high protein-low carbohydrate protein bar for more than 5 weeks.