• Title/Summary/Keyword: Communication protection coordination

Search Result 26, Processing Time 0.022 seconds

Design Methodology of the Bus Configuration and Protection Coordination Basic Logics of Power Substation Using EMTP-RV (EMTP-RV를 이용한 변전소 모선 방식과 보호협조 기초 논리 설계 방법론에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1129-1138
    • /
    • 2019
  • Since substations are structurally complex due to the concentration of protection coordination facilities with substation facilities for long distance power transmission, it is difficult to design a protection coordination system to minimize the spreading effect of the fault when a fault occurs on transmission line or distribution line. Therefore, in this paper, the bus configuration and the basic logic of protection coordination that have a major influence on the reliability of substation power supply were analyzed, and the substation protection coordination logic to detect internal and external faults was developed based on EMTP-RV. As the basic logic of substation protection coordination, the percent differential protection relay logic for substation internal fault detection and the overload protection relay logic for inference of external failure were modeled. Finally, the 154kV substation including the protection coordination logic was modeled using EMTP-RV, and the effectiveness of the protection coordination design methodology was confirmed through the several fault simulation cases based on EMTP-RV.

A Study on the Protective Coordination of Generator Overexcitation and Overvoltage Relay (발전기 과여자 및 과전압 계전기 보호협조에 관한 연구)

  • Park, Ji-Kyung;Kim, Kwnag-Hyun;Kim, Chul-Hwan;Lyu, Young-Sik;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1187-1194
    • /
    • 2017
  • After North American wide area black out on August 14, 2003, various studies have been conducted to find out the reason of the disaster. One of main reasons was misoperation of generator protection system. Since then, protective coordination between generator protection system and excitation system controls has been hot issue among electrical engineers. Among various generator protection relays, in this paper, we focused on generator overvoltage and overexcitation relay, which protect the over-flux condition of the generator. Thus, at first, we modeled the generator overvoltage, overexcitation relay and detailed power system including excitation system, governor and etc., based on actual field data. And then, we reviewed the protective coordination of generator overvoltage and overexcitation relay using electromagnetic transient program. In addition, we discussed the protective coordination method for redundant protection relays in both automatic voltage regulator and generator side.

Development of Protection Coordination Algorithm for Smart Distribution Management System using Communication Method based on IEC61850 (IEC61850 기반의 통신방식을 이용한 스마트 배전운영시스템용 보호협조 알고리즘 개발)

  • Chu, Cheol-Min;Yun, Sang-Yun;Kwan, Seung-Chul;Chu, Kyung-Yong;Jin, Young-Kyu;Choi, Myeon-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1412-1419
    • /
    • 2012
  • In this paper, we propose the protection coordination algorithm using communication methode based on IEC 61850. The communication protocol in power distribution management system has been issued by IEC standard, IEC61850 of them, which was made for substation automation system, has researched to apply into power distribution system, even though the standard is not a suitable for the system. In smart distribution management system' launched in 2009, the communication network based on the ethernet network for IEC 61850 has been designed to apply the self-healing concept, which is to perform the system protection through the communication between remote terminal units(RTU) according to the standard. However, it is first time to apply the scheme in the real. Thus, this paper proposed the protection algorithm and consideration for applying communication method and introduced the result of demonstration.

Protection Coordination Strategy of Microgrid Demonstration Site (마이크로그리드 실증사이트의 보호협조 전략)

  • Jin, Dae-Geun;Choi, Won-Jun;Won, Dong-Jun;Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.966-973
    • /
    • 2012
  • In microgrid demonstration site, distributed generations can make bidirectional power flows on the system. If an accident occurs, the fault current from the inverter based distributed generation is small. However, the conventional protection scheme in distribution network is designed to operate at high fault current. This means that the traditional protection of distribution network is no longer applicable and new protection methods must be developed. In this paper, for two cases, algorithms for protection coordination of demonstration site is proposed and verified through PSCAD/EMTDC simulation. In first case, protection devices are assumed to have the abilities of directional relaying and communication. In second case, protection devices do not have those abilities. Proposed protection coordination algorithms detect the fault locations and protect the microgrid fairly well.

A study on Optimal Operation of Protection Coordination Devices Evaluation System in Distribution System with Distributed Sources (분산전원이 연계된 배전계통에 보호협조기기 평가시스템의 최적운용에 관한 연구)

  • Ji, Sungho;Song, Bangwoon;Kim, Byungki;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2971-2978
    • /
    • 2013
  • Recently, with the world-wide issues about global warming and CO2 reduction, a number of distributed generations(DGs) such as photovoltaic(PV) and wind power(WP), are interconnected with the distribution systems. However, DGs can change the direction of the power flow from one-direction to bi-direction, and also change the direction and amount of fault current of existing distribution systems. Therefore, it may cause the critical problems on the power quality and protection coordination. This paper proposes an operation algorithm for bi-directional protection coordination using and apply it for the evaluation system for protection coordination. From the simulation results It is found that the proposed method is more effective and convenient than existing method.

Research on Backup Protective Coordination for Distribution Network (네트워크 배전계통용 백업 보호협조에 관한 연구)

  • Kim, WooHyun;Chae, WooKyu;Hwang, SungWook;Kim, JuYong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.15-19
    • /
    • 2022
  • The radial distribution systems (RDS) commonly used around the world has the following disadvantages. First, when the DL is operated on a radial system, the line utilization rate is usually kept low. Second, if a fault occurs in the radial DL, a power outage of 3 to 5 minutes is occurring depending on the operator's proficiency and fault situation until the fault section is separated and the normal section is replaced. To solve this problem, Various methods have been proposed at domestic and foreign to solve this problem, and in Korea, research is underway on the advanced system of operating multiple linked DL always. A system that is electrically linked always, and that is built to enable high-speed communication during the protection coordination is named networked distribution system (NDS). Because the load shares the DL, the line utilization rate can be improved, and even if the line faults, the normal section does not need to be cut off, so the normal section does not experience a power outage. However, since it is impossible to predict in which direction the fault current will flow when a failure occurs in the NDS, a communication-based protection coordination is used, but there is no backup protection coordination method in case of communication failure. Therefore, in this paper, we propose a protective cooperation method to apply as a backup method when communication fails in NDS. The new method is to change TCC by location of CB using voltage drop in case of fault.

Improved Coordination Method for Back-up Protection Schemes Based on IEC 61850 (IEC 61850 기반 후비보호계전시스템 보호협조 개선방안)

  • Kim, Hyung-Kyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome this problem clearly, this paper describes an improved backup protection coordination scheme using an IEC 61850-based distance relay for transformer backup protection. IEC 61850-based IED(Intelligent Electronic Device) and the network system based on the kernel 2.6 LINUX are realized to verify the proposed method. And laboratory tests to estimate the communication time show that the proposed coordination method is reliable enough for the improved backup protection scheme.

A Study on the Protective Coordination and Automatic Setting Method using Agents in Distribution System with Loop (루프 배전계통에서 Agent를 이용한 보호협조 및 자동정정 방법에 관한 연구)

  • Jin, Young-Taek;Lee, Seung-Jae;Choi, Myeon-Song;Lim, Seong-Il;Kim, Wan-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1107-1114
    • /
    • 2012
  • In this paper, we propose protective coordination and automatic setting method using agents for distribution system with loop. The proposed protection scheme adopts an agent technology assuming communication among protection agents and auto-switch agents. Having exchanged fault-related information with each other, protection agents and auto-switch agents perform the primary and backup protection and fault section isolation, respectively. this proposed scheme using agents for distribution system with loop is implemented by matlab. Because of the various configuration of distribution system, It's difficult to find cooperative agents for each agent. This paper develops a program to automatically set the cooperative route for the agents.

An Autonomous Optimal Coordination Scheme in a Protection System of a Power Distribution Network by using a Multi-Agent Concept

  • Hyun, Seung-Ho;Min, Byung-Woon;Jung, Kwang-Ho;Lee, Seung-Jae;Park, Myeon-Song;Kang, Sang-Hee
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.89-94
    • /
    • 2002
  • In this paper, a protection system using a Multi-Agent concept for power distribution networks is proposed. Every digital over current relay(OCR) is developed as an agent by adding its own intelligence, self-tuning and communication ability. The main advantage of the Multi-Agent concept is that a group of agents work together to achieve a global goal which is beyond the ability of each individual agent. In order to cope with frequent changes in the network operation condition and faults, an OCR agent, suggested in this paper, is able to detect a fault or a change in the network and find its optimal parameters for protection in an autonomous manner considering information of the whole network obtained by communication between other agents. Through this kind of coordination and information exchanges, not only a local but also a global protective scheme is completed. Simulations in a simple distribution network show the effectiveness of the suggested protection system.

A Study on the Correction of Protection Relay of Temporary Electric Power Installations for Storage Tank (저장 탱크용 임시전력설비의 보호계전기 정정에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.562-567
    • /
    • 2020
  • In this paper, this is a study on the correction of protection relays to monitor temporary power facilities for storage tanks especially transformers to block and protect faults such as insulation breakdown. When an abnormality such as a short circuit or a ground fault occurs in the power system, it is important to detect this quickly cut off the device and equipment in which the fault occurred and separate it from the power system to correct the protection relay so that it does not interfere with power supply. In addition the fault current calculation that accurately applies the fault type and the cause of the fault for protection cooperation will be the most important factor in the correction of the protection relay. For protection coordination a study was conducted on the method of coordination for protection of power facility protection for storage tanks such as over current relay, ground over current relay, under voltage relay, and ground over voltage relay applied to temporary.