• Title/Summary/Keyword: Communication layer

Search Result 1,677, Processing Time 0.033 seconds

Mac Layer Multicasting scheme in WiBro (WiBro 상에서의 MAC Layer 멀티캐스팅 기법)

  • Lee, Kyu-Seol;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1272-1275
    • /
    • 2007
  • 휴대 인터넷 기술은 모바일 환경에서 인터넷에 접근하기 위한 사용자들의 요구에서 시작되어 이를 위한 기술들이 끊임없이 연구되고 있다. 그 중 WiBro는 WiMax 포럼 안에 이동성을 지원하는 표준으로 채택된 국내표준이다. 최근 사용자들은 이동하면서 멀티미디어 정보를 이용하고자 하는 요구가 증가하고 이를 제공하기위한 기술인 MobileTV의 다양한 표준들도 활발히 연구되고 있다. WiBro 또한 이러한 사용자의 요구를 수용하기 위해 멀티캐스팅과 브로드캐스팅 기술은 반드시 지원되어야 하며 본 논문에서는 WiBro에서 멀티캐스팅을 사용할 수 있도록 MAC Layer 멀티캐스팅을 제안하였다. 제안된 방법을 통해 기존 유니캐스팅 방법으로 멀티캐스팅을 제공하는 네트워크 비효율적 방법을 해결하였다.

  • PDF

Admittance Spectroscopic Analysis of Organic Light Emitting Diodes with a LiF Buffer Layer

  • Kim, Hyun-Min;Park, Hyung-June;Yi, Jun-Sin;Oh, Se-Myoung;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1014-1017
    • /
    • 2006
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for $ITO/Alq_3/LiF/Al$ device structure. The admittance spectroscopic analysis of the devices with LiF layer shows reduction in contact resistance $(R_C)$, parallel resistance $(R_P)$ and increment in parallel capacitance $(C_P)$.

  • PDF

Characteristic of $TiO_2$ Thin Film for Nonvolatile Memory Device's Gate-Blocking Layer (비휘발성 메모리 소자의 Gate-Blocking Layer 적용을 위한 $TiO_2$ 박막 특성)

  • Choi, Hak-Mo;Lee, Kwang-Soo;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.199-200
    • /
    • 2007
  • 본 논문에서는 $SiO_2$ Gate 유전체를 대체할 재료의 하나인 $TiO_2$, Gate 유전체의 기판 증착 온도에 따른 특성을 알아보고자 한다. 디바이스의 고집적화가 높아짐에 따라 얇은 두께의 Gate 유전체의 절대적인 필요에 따라 두께를 최소화하면서 유전율은 높아 전기적 특성이 우수한 소재를 찾게 되었다. 본 논문의 실험에서는 비휘발성 메모리 소자 제작시 Gate Blocking Layer 적용을 위해 High-k 물질인 $TiO_2$, 박막 증착 실험을 하였고, APCVD 방법을 사용하여 성장하였다. 증착 온도에 따른 I-V 특성을 분석하고 그에 따른 소자의 물리적 구조를 SEM을 통해 확인하면서 소자 제작시 최적의 온도를 찾고자 하였다.

  • PDF

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

Improved Carrier Tunneling and Recombination in Tandem Solar Cell with p-type Nanocrystalline Si Intermediate Layer

  • Park, Jinjoo;Kim, Sangho;Phong, Pham duy;Lee, Sunwha;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2020
  • The power conversion efficiency (PCE) of a two-terminal tandem solar cell depends upon the tunnel-recombination junction (TRJ) between the top and bottom sub-cells. An optimized TRJ in a tandem cell helps improve its open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (PCE). One of the parameters that affect the TRJ is the buffer layer thickness. Therefore, we investigated various TRJs by varying the thickness of the buffer or intermediate layer (TRJ-buffer) in between the highly doped p-type and n-type layers of the TRJ. The TRJ-buffer layer was p-type nc-Si:H, with a doping of 0.06%, an activation energy (Ea) of 43 meV, an optical gap (Eg) of 2.04 eV, and its thickness was varied from 0 nm to 125 nm. The tandem solar cells we investigated were a combination of a heterojunction with intrinsic thin layer (HIT) bottom sub-cell and an a-Si:H (amorphous silicon) top sub-cell. The initial cell efficiency without the TRJ buffer was 7.65% while with an optimized buffer layer, its efficiency improved to 11.74%, i.e., an improvement in efficiency by a factor of 1.53.

The Transmission Performance Analysis and Security Policy in Tactical Communication Environment (전술통신 환경에서 전송 성능 분석 및 보안 정책)

  • Hong, Jinkeun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.303-309
    • /
    • 2013
  • This paper analyzed about operation environment and policy for US military tactical communication, and security policy and transmission performance of tactical link. It is presented operation communication message and framework, which is supported semi automated force, SINCGARS specification of link layer in operation environment, and analyzed COMSEC policy and application layer security in tactical security policy. Also it analyzed in respect to transmission performance and crypto synchronization detection. Security policy of tactical link and COMSEC is analyzed in respect of crypto device such as AFKDMS, AKMS, RBECS, KIV-7/HSB.

A Review of Wet Chemical Etching of Glasses in Hydrofluoric Acid based Solution for Thin Film Silicon Solar Cell Application

  • Park, Hyeongsik;Cho, Jae Hyun;Jung, Jun Hee;Duy, Pham Phong;Le, Anh Huy Tuan;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.75-82
    • /
    • 2017
  • High efficiency thin film solar cells require an absorber layer with high absorption and low defect, a transparent conductive oxide (TCO) film with high transmittance of over 80% and a high conductivity. Furthermore, light can be captured through the glass substrate and sent to the light absorbing layer to improve the efficiency. In this paper, morphology formation on the surface of glass substrate was investigated by using HF, mainly classified as random etching and periodic etching. We discussed about the etch mechanism, etch rate and hard mask materials, and periodic light trapping structure.

Implement of Call blocking Probabilities in Mobile Communication Networks (이동통신 네트워크에서 호 블록킹 확률의 개선 방안)

  • Park, Sang-Hyun;Oh, Youn-Chil;Lee, Young-Seok;Yang, Hae-Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • This paper presents a method of improving the service availability by distributing the traffic of voice/data calls over the multi-layer cells in a mobile communication network. The traffic model is described and the call handling performance is analyzed. In our method, a fast moving call is moved to and serviced in the upper layer cell. A call is also moved upward when an overflow occurs. But unlike other methods, the call that is moved upward in the overflow case is the one which has the longest sojourn time in the cell. Moreover, when the call that was moved upward due to overflow condition stays longer than a certain period of time in the upper layer cell, the system moves the call back to the lower layer in order to save the more expensive resources of the upper layer cell. Call handling performance of this method evaluated from M/M/C/K models shows clear improvement with respect to call blocking probability and forced termination probability.

Use of Self Assembled Monolayer in the Cathode/Organic Interface of Organic Light Emitting Devices for Enhancement of Electron Injection

  • Manna, U.;Kim, H.M.;Gowtham, M.;Yi, J.;Sohn, Sun-young;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1343-1346
    • /
    • 2005
  • Self assembled monolayers (SAM) are generally used at the anode/organic interface to enhance the carrier injection in organic light emitting devices, which improves the electroluminescence performance of organic devices. This paper reports the use of SAM of 1-decanethiol (H-S(CH2)9CH3) at the cathode/organic interface to enhance the electron injection process for organic light emitting devices. Aluminum (Al), tris-(8-hydroxyquionoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(3 -methylphenyl)-1,1'- diphenyl-4,4'-diamine (TPD) and indium-tin-oxide (ITO) were used as bottom cathode, an emitting layer (EML), a hole-transporting layer (HTL) and a top anode, respectively. The results of the capacitancevoltage (C-V), current density -voltage (J-V) and brightness-voltage (B-V), luminance and quantum efficiency measurements show a considerable improvement of the device performance. The dipole moment associated with the SAM layer decreases the electron schottky barrier between the Al and the organic interface, which enhances the electron injection into the organic layer from Al cathode and a considerable improvement of the device performance is observed. The turn-on voltage of the fabricated device with SAM layer was reduced by 6V, the brightness of the device was increased by 5 times and the external quantum efficiency is increased by 0.051%.

  • PDF