In order to provide a location-based services regardless of indoor or outdoor space, it is important to provide position information of the terminal regardless of location. Among the wireless/mobile communication resources used for this purpose, Long Term Evolution (LTE) signal is a representative infrastructure that can overcome spatial limitations, but the positioning method based on the location of the base station has a disadvantage in that the accuracy is low. Therefore, a fingerprinting technique, which is a pattern recognition technology, has been widely used. The simplest yet widely applied algorithm among Fingerprint positioning technologies is k-Nearest Neighbors (kNN). However, in the kNN algorithm, it is difficult to find the optimal K value with the lowest positioning error for each location to be estimated, so it is generally fixed to an appropriate K value and used. Since the optimal K value cannot be applied to each estimated location, therefore, there is a problem in that the accuracy of the overall estimated location information is lowered. Considering this problem, this paper proposes a technique for adaptively varying the K value by using a Convolutional Neural Network (CNN) model among Artificial Neural Network (ANN) techniques. First, by using the signal information of the measured values obtained in the service area, an image is created according to the Physical Cell Identity (PCI) and Band combination, and an answer label for supervised learning is created. Then, the structure of the CNN is modeled to classify K values through the image information of the measurements. The performance of the proposed technique is verified based on actual data measured in the testbed. As a result, it can be seen that the proposed technique improves the positioning performance compared to using a fixed K value.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권2호
/
pp.520-541
/
2023
In CRNs, SS is of utmost significance. Every CR user generates a sensing report during the training phase beneath various circumstances, and depending on a collective process, either communicates or remains silent. In the training stage, the fusion centre combines the local judgments made by CR users by a majority vote, and then returns a final conclusion to every CR user. Enough data regarding the environment, including the activity of PU and every CR's response to that activity, is acquired and sensing classes are created during the training stage. Every CR user compares their most recent sensing report to the previous sensing classes during the classification stage, and distance vectors are generated. The posterior probability of every sensing class is derived on the basis of quantitative data, and the sensing report is then classified as either signifying the presence or absence of PU. The ISVM technique is utilized to compute the quantitative variables necessary to compute the posterior probability. Here, the iterations of SVM are tuned by novel GO-PSA by combining GOA and PSO. Novel GO-PSA is developed since it overcomes the problem of computational complexity, returns minimum error, and also saves time when compared with various state-of-the-art algorithms. The dependability of every CR user is taken into consideration as these local choices are then integrated at the fusion centre utilizing an innovative decision combination technique. Depending on the collective choice, the CR users will then communicate or remain silent.
Evaluation and optimization of tunnel wall convergence (TWC) plays a vital role in preventing potential problems during tunnel construction and utilization stage. When convergence occurs at a high rate, it can lead to significant problems such as reducing the advance rate and safety, which in turn increases operating costs. In order to design an effective solution, it is important to accurately predict the degree of TWC; this can reduce the level of concern and have a positive effect on the design. With the development of soft computing methods, the use of deep learning algorithms and neural networks in tunnel construction has expanded in recent years. The current study aims to employ the long-short-term memory (LSTM) deep neural network predictor model to predict the TWC, based on 550 data points of observed parameters developed by collecting required data from different tunnelling projects. Among the data collected during the pre-construction and construction phases of the project, 80% is randomly used to train the model and the rest is used to test the model. Several loss functions including root mean square error (RMSE) and coefficient of determination (R2) were used to assess the performance and precision of the applied method. The results of the proposed models indicate an acceptable and reliable accuracy. In fact, the results show that the predicted values are in good agreement with the observed actual data. The proposed model can be considered for use in similar ground and tunneling conditions. It is important to note that this work has the potential to reduce the tunneling uncertainties significantly and make deep learning a valuable tool for planning tunnels.
The 3th International Conference on Construction Engineering and Project Management
/
pp.700-706
/
2009
Bridges are vital components of any road network which demand crucial and timely decision-making for Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support system (DSS), have been developed since the early 1990's to assist in the management of a large bridge network. Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the prediction accuracy of bridge deterioration models.
최근, 메타버스 서비스에 대한 기대가 높아지면서 VR/AR 콘텐츠의 사용이 활발히 늘어나고 있다. 메타버스를 이용한 가상 체험은 사용자들이 직접 가지 않아도 원격지를 둘러보고 체험할 수 있으며 실제 환경을 둘러보는 듯한 느낌을 받을 수 있다. 기존의 메타버스는 가상의 공간에서 체험 콘텐츠를 제공하는 것이 전반적이였으나 최근 실제로 캡처한 공간을 이용하는 사례에 대한 필요성이 늘어나고 있다. 예를 들면, 가상 휴먼을 실제 환경에 합성하여 공간감과 현실감을 높이도록 제작하여 메타버스 콘텐츠가 실제 공간에 있는 듯한 느낌을 제공하는 것이 가능하다. 본 논문에서는 원격지 공간 캡쳐 기반 가상 휴먼 합성 기술을 제시하기 위해 원격지 환경을 360도 파노라마 캡쳐 후 가상 휴먼을 합성하는 기법을 제시한다. 이를 위해 원격지 환경을 분석하여 오차 없이 캡쳐할 수 있는 위치를 파악하고, 가상 휴먼을 합성하는 방법을 적용한다. 본 논문에 따르면 산업 공장, 의료시설, 학교 등 다양한 공간을 캡쳐해 사용할 수 있으며 서로 떨어져 있는 원격지 간 의사소통 및 가이드를 제공할 수 있다.
International journal of advanced smart convergence
/
제12권1호
/
pp.18-30
/
2023
We compared empirically the forecast accuracies of the LSTM model, and the ARIMA model. ARIMA model used auto.arima function. Data used in the model is 100 days. We compared with the forecast results for 50 days. We collected the stock closing prices of the top 4 companies by market capitalization in Korea such as "Samsung Electronics", and "LG Energy", "SK Hynix", "Samsung Bio". The collection period is from June 17, 2022, to January 20, 2023. The paired t-test is used to compare the accuracy of forecasts by the two methods because conditions are same. The null hypothesis that the accuracy of the two methods for the four stock closing prices were the same were rejected at the significance level of 5%. Graphs and boxplots confirmed the results of the hypothesis tests. The accuracies of ARIMA are higher than those of LSTM for four cases. For closing stock price of Samsung Electronics, the mean difference of error between ARIMA and LSTM is -370.11, which is 0.618% of the average of the closing stock price. For closing stock price of LG Energy, the mean difference is -4143.298 which is 0.809% of the average of the closing stock price. For closing stock price of SK Hynix, the mean difference is -830.7269 which is 1.00% of the average of the closing stock price. For closing stock price of Samsung Bio, the mean difference is -4143.298 which is 0.809% of the average of the closing stock price. The auto.arima function was used to find the ARIMA model, but other methods are worth considering in future studies. And more efforts are needed to find parameters that provide an optimal model in LSTM.
본 논문에서는 선형 예측 분석을 기반으로 한 딱총새우 잡음 검출을 위한 특징을 제안한다. 딱총새우는 천해에 서식하는 종으로, 높은 진폭의 신호를 생성하고 빈번하게 발생하기 때문에 수중 잡음의 주된 원인 중 하나이다. 제안된 특징은 딱총새우 잡음이 갑작스럽게 발생하고 빠르게 소멸하는 특징을 활용하기 위해 선형 예측 분석을 이용하여 정확한 잡음 구간을 검출하고 딱총새우 잡음의 영향을 줄인다. 선형 예측 분석으로 예측한 값과 실제 측정값 사이의 오차가 크기 때문에 이를 통해 효과적으로 딱총새우 구간 검출이 가능해진다. 추가적으로 제안된 특징에 일정 오경보 확률 탐지기를 결합하여 잡음 구간 검출 성능을 추가적으로 개선한다. 제안한 방법을 딱총새우 잡음 구간 검출 최신 방법으로 알려진 다층 웨이블릿 패킷 분해와 비교한 결과, 제안한 방법이 수신자 조작 특성 곡선과 곡선 아래의 면적 측면에서 성능이 평균적으로 0.12만큼 우수하였고 계산량 측면에서도 계산 복잡도가 더 낮았다.
본 논문에서는 수중글라이더용 항법필터 설계를 수행한다. 해양의 염분, 수온 등 해양 정보 획득을 위해서 사용되는 수중글라이더는 저전력으로 장기간 운용이 되기 때문에, 다양한 센서를 적용하기에 많은 제약이 있다. 제한된 수중글라이더의 운용 특성을 고려하여 센서 구성이 다른 두 종류의 위치 추정을 위한 항법 필터를 설계한다. 항법필터는 최소한의 센서출력 정보를 바탕으로 수중글라이더의 동체좌표계 기준 속도를 추정한다. 첫 번째 필터의 센서 구성은 가속도계, 지자계, 심도계 센서로 구성 되어있고, 두 번째 필터는 첫 번째 필터와 동일한 구성에 자이로 센서가 추가된다. 추정된 속도는 자세정보와 융합하여 항법좌표계의 속도정보로 변환 뒤 최종적으로 위치를 추정한다. 제안된 필터의 성능을 분석하기 위해 단일 시뮬레이션 및 몬테카를로 수치해석 기법을 이용하여 분석을 수행하고 수행결과는 표준편차(standard deviation, 1σ)로 분석한다. 각 필터의 위치오차에 대한 표준편차는 334.34, 125.91m이다.
본 연구는 중국의 각 지역별 시장에 대한 옴니채널시장 잠재력을 분석·평가함으로써 한국 물류기업 및 소매유통기업의 협력진출을 위한 전략수립에 대한 시사점을 제시하는데 목적이 있다. 중국의 전자상거래, 소매판매, 특송서비스에 영향을 미치는 변수를 문헌연구를 토대로 추출하여 회귀분석 및 분산분해 분석을 실시하였다. 즉, 중국 31개 지역의 각 지역별 통계자료를 활용하여 각 지역별 전자상거래 및 소비재 소매판매액에 영향을 미치는 변수를 분석하였다. 또한 중국의 특송서비스 판매량, 물류GDP, 휴대폰 사용자 수의 상호 반응 정도를 추정하기 위해 분산분해 분석을 실시하였다. 연구결과를 토대로 지역별 순위를 선정하여 중국 옴니채널시장의 잠재력을 평가하였다. 또한 이를 바탕으로 소매기업과 물류기업의 중국 옴니채널 시장 진출방안에 대한 시사점을 제공하였다.
4차 산업혁명으로 인공지능(AI, Artificial Intelligence) 관련 기술이 고도로 성장함에 따라 여러 분야에서 AI를 접목하는 사례가 증가하고 있다. 주요 원인은 정보통신기술이 발달됨에 따라 기하급수적으로 증가하는 데이터를 사람이 직접 처리·분석하는데 현실적인 한계가 있고, 새로운 기술을 적용하여 휴먼 에러에 대한 리스크도 감소시킬 수 있기 때문이다. 이번 연구에서는 '원격 전위 측정용터미널(T/B, Test Box)'로부터 수신된 데이터와 해당시점의 '원격 정류기' 출력을 수집 후, AI가 학습하도록 하였다. AI의 학습 데이터는 최초 수집된 데이터의 회기분석을 통한 데이터 전처리로 확보하였고, 학습모델은 심층 강화학습(DRL, Deep Reinforce-ment Learning) 알고리즘 중(中) Value기반의 Q-Learning모델이 적용하였다. 데이터 학습이 완료된 AI는 실제 도시가스 공급지역에 투입하여, 수신된 원격T/B 데이터를 기반으로 AI가 적절하게 대응하는지 검증하고, 이를 통해 향후 AI가 전기방식 관리에 적합한 수단으로 활용될 수 있는지 검증하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.