• Title/Summary/Keyword: Communication error

Search Result 3,813, Processing Time 0.03 seconds

Performance Analysis of UE for WCDMA due to Frequency Error (WCDMA 시스템에서 주파수 에러에 의한 단말기 성능 분석)

  • 이일규;송명선;임인성;이광일;오승엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.461-464
    • /
    • 2003
  • This paper explains the impact of frequency error on the performance of WCDMA mobile communication systems and what brings about the frequency error between the base station and the mobile station, and then presents automatic frequency error correction method in mobile receiver. On the basis of system requirement related to frequency stability, the integration test between the base station and the mobile station was accomplished. After applying automatic frequency error correction to mobile receiver, 4 Hz of frequency error at transmitting frequency was obtained. The result met frequency error requirement of 0.1ppm(about 200 Hz). Performance degradation due to frequency error was measured by means of Error Vector Magnitude (EVM)

  • PDF

Contour Plots of Objective Functions for Feed-Forward Neural Networks

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.30-35
    • /
    • 2012
  • Error surfaces provide us with very important information for training of feed-forward neural networks (FNNs). In this paper, we draw the contour plots of various error or objective functions for training of FNNs. Firstly, when applying FNNs to classifications, the weakness of mean-squared error is explained with the viewpoint of error contour plot. And the classification figure of merit, mean log-square error, cross-entropy error, and n-th order extension of cross-entropy error objective functions are considered for the contour plots. Also, the recently proposed target node method is explained with the viewpoint of contour plot. Based on the contour plots, we can explain characteristics of various error or objective functions when training of FNNs proceeds.

A modified error-oriented weight positioning model based on DV-Hop

  • Wang, Penghong;Cai, Xingjuan;Xie, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.405-423
    • /
    • 2022
  • The distance vector-hop (DV-Hop) is one of the emblematic algorithms that use node connectivity for locating, which often accompanies by a large positioning error. To reduce positioning error, the bio-inspired algorithm and weight optimization model are introduced to address positioning. Most scholars argue that the weight value decreases as the hop counts increases. However, this point of view ignores the intrinsic relationship between the error and weight. To address this issue, this paper constructs the relationship model between error and hop counts based on actual communication characteristics of sensor nodes in wireless sensor network. Additionally, we prove that the error converges to 1/6CR when the hop count increase and tendency to infinity. Finally, this paper presents a modified error-oriented weight positioning model, and implements it with genetic algorithm. The experimental results demonstrate excellent robustness and error removal.

A Modulation and Channel State Estimation Algorithm Using the Received Signal Analysis in the Blind Channel (블라인드 채널에서 수신 신호 분석 기법을 사용한 변조 및 채널 상태 추정 알고리즘)

  • Cho, Minhwan;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1406-1409
    • /
    • 2016
  • In this paper, we propose the heuristic signal grouping algorithm to estimate channel state value over full blind communication situation which means that there is no information about the modulation scheme and the channel state information between the transmitter and the receiver. Hereafter, using the constellation rotation method and the probability density function(pdf) the modulation scheme is determined to perform automatic modulation classification(AMC). Furthermore, the modulation type and a channel state value estimation capability is evaluated by comparing the proposed scheme with other conventional techniques from the simulation results in terms of the symbol error rate(SER) and the root mean square error (RMSE).

Communication Equalizer Algorithms with Decision Feedback based on Error Probability (오류 확률에 근거한 결정 궤환 방식의 통신 등화 알고리듬)

  • Kim, Nam-Yong;Hwang, Young-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2390-2395
    • /
    • 2011
  • For intersymbol interference (ISI) compensation from communication channels with multi-path fading and impulsive noise, a decision feedback equalizer algorithm that minimizes Euclidean distance of error probability is proposed. The Euclidean distance of error probability is defined as the quadratic distance between the probability error signal and Dirac-delta function. By minimizing the distance with respect to equalizer weight based on decision feedback structures, the proposed decision feedback algorithm has shown to have significant effect of residual ISI cancellation on severe multipath channels as well as robustness against impulsive noise.

A Signal-Level Prediction Scheme for Rain-Attenuation Compensation in Satellite Communication Linkes (위성 통신 링크에서 강우 감쇠 보상을 위한 신호 레벨 예측기법)

  • 임광재;황정환;김수영;이수인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.782-793
    • /
    • 2000
  • This paper presents a simple dynamical prediction scheme of the signal level which is attenuated and varied due to rain fading in satellite communication links using above 10GHz frequency bands. The proposed prediction scheme has four functional blocks for discrete-time low-pass filtering, slope-based prediction, mean-error correction and hybrid fixed/variable prediction margin allocation. Through simulations using Ka-band attenuation data obtained from the data measured over Ku-band by frequency-scaling, it is shown that the slope-based prediction with the mean-error correction has as small standard deviation of prediction error as below 1 dB, and that the error is about 1.5 to 2.5 times as small as that without the mean-error correction. The hybrid prediction margin allocation requires smaller average margin than those of both fixed and variable methods.

  • PDF

SER Analysis of QAM with Space Diversity in Rayleigh Fading Channels

  • Kim, Chang-Joo;Kim, Young-Su;Jeong, Goo-Young;Mun, Jae-Kyung;Lee, Hyuck-Jae
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.25-35
    • /
    • 1996
  • This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to noise ratio among all of the diversity channels for SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.

  • PDF

Optimum Design of the Microphone Sensor Array for 3D TDOA Positioning System (3차원 TDOA 위치인식 시스템의 마이크 센서 배열 최적 설계)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • A study on the indoor positioning system has been active recently for the location based service indoors. In the 3 dimensional positioning system based on the acoustic signal and TDOA technology, the error characteristics of the estimated source position would be changed depending on the number of microphones and the pattern of the microphone array. In this paper, the estimated position error according to the measured distance error between the microphones and the signal source is analyzed, and the optimum microphone array is decided considering the estimated position error patterns and the total amount of the estimated position error.

Euclidean Distance of Biased Error Probability for Communication in Non-Gaussian Noise (비-가우시안 잡음하의 통신을 위한 바이어스된 오차 분포의 유클리드 거리)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1416-1421
    • /
    • 2013
  • In this paper, the Euclidean distance between the probability density functions (PDFs) for biased errors and a Dirac-delta function located at zero on the error axis is proposed as a new performance criterion for adaptive systems in non-Gaussian noise environments. Also, based on the proposed performance criterion, a supervised adaptive algorithm is derived and applied to adaptive equalization in the shallow-water communication channel distorted by severe multipath fading, impulsive and DC-bias noise. The simulation results compared with the performance of the existing MEDE algorithm show that the proposed algorithm yields over 5 dB of MSE enhancement and the capability of relocating the mean of the error PDF to zero on the error axis.