• Title/Summary/Keyword: Communication algorithm

Search Result 7,845, Processing Time 0.029 seconds

Proposal of autonomous take-off drone algorithm using deep learning (딥러닝을 이용한 자율 이륙 드론 알고리즘 제안)

  • Lee, Jong-Gu;Jang, Min-Seok;Lee, Yon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2021
  • This study proposes a system for take-off in a forest or similar complex environment using an object detector. In the simulator, a raspberry pi is mounted on a quadcopter with a length of 550mm between motors on a diagonal line, and the experiment is conducted based on edge computing. As for the images to be used for learning, about 150 images of 640⁎480 size were obtained by selecting three points inside Kunsan University, and then converting them to black and white, and pre-processing the binarization by placing a boundary value of 127. After that, we trained the SSD_Inception model. In the simulation, as a result of the experiment of taking off the drone through the model trained with the verification image as an input, a trajectory similar to the takeoff was drawn using the label.

Machine Learning Assisted Information Search in Streaming Video (기계학습을 이용한 동영상 서비스의 검색 편의성 향상)

  • Lim, Yeon-sup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.361-367
    • /
    • 2021
  • Information search in video streaming services such as YouTube is replacing traditional information search services. To find desired detailed information in such a video, users should repeatedly navigate several points in the video, resulting in a waste of time and network traffic. In this paper, we propose a method to assist users in searching for information in a video by using DBSCAN clustering and LSTM. Our LSTM model is trained with a dataset that consists of user search sequences and their final target points categorized by DBSCAN clustering algorithm. Then, our proposed method utilizes the trained model to suggest an expected category for the user's desired target point based on a partial search sequence that can be collected at the beginning of the search. Our experiment results show that the proposed method successfully finds user destination points with 98% accuracy and 7s of the time difference by average.

Store Sales Prediction Using Gradient Boosting Model (그래디언트 부스팅 모델을 활용한 상점 매출 예측)

  • Choi, Jaeyoung;Yang, Heeyoon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.171-177
    • /
    • 2021
  • Through the rapid developments in machine learning, there have been diverse utilization approaches not only in industrial fields but also in daily life. Implementations of machine learning on financial data, also have been of interest. Herein, we employ machine learning algorithms to store sales data and present future applications for fintech enterprises. We utilize diverse missing data processing methods to handle missing data and apply gradient boosting machine learning algorithms; XGBoost, LightGBM, CatBoost to predict the future revenue of individual stores. As a result, we found that using median imputation onto missing data with the appliance of the xgboost algorithm has the best accuracy. By employing the proposed method, fintech enterprises and customers can attain benefits. Stores can benefit by receiving financial assistance beforehand from fintech companies, while these corporations can benefit by offering financial support to these stores with low risk.

Image Super-Resolution for Improving Object Recognition Accuracy (객체 인식 정확도 개선을 위한 이미지 초해상도 기술)

  • Lee, Sung-Jin;Kim, Tae-Jun;Lee, Chung-Heon;Yoo, Seok Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.774-784
    • /
    • 2021
  • The object detection and recognition process is a very important task in the field of computer vision, and related research is actively being conducted. However, in the actual object recognition process, the recognition accuracy is often degraded due to the resolution mismatch between the training image data and the test image data. To solve this problem, in this paper, we designed and developed an integrated object recognition and super-resolution framework by proposing an image super-resolution technique to improve object recognition accuracy. In detail, 11,231 license plate training images were built by ourselves through web-crawling and artificial-data-generation, and the image super-resolution artificial neural network was trained by defining an objective function to be robust to the image flip. To verify the performance of the proposed algorithm, we experimented with the trained image super-resolution and recognition on 1,999 test images, and it was confirmed that the proposed super-resolution technique has the effect of improving the accuracy of character recognition.

Hardware Implementation of Fog Feature Based on Coefficient of Variation Using Normalization (정규화를 이용한 변동계수 기반 안개 특징의 하드웨어 구현)

  • Kang, Ui-Jin;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.819-824
    • /
    • 2021
  • As technologies related to image processing such as autonomous driving and CCTV develop, fog removal algorithms using a single image are being studied to improve the problem of image distortion. As a method of predicting fog density, there is a method of estimating the depth of an image by generating a depth map, and various fog features may be used as training data of the depth map. In addition, it is essential to implement a hardware capable of processing high-definition images in real time in order to apply the fog removal algorithm to actual technologies. In this paper, we implement NLCV (Normalize Local Coefficient of Variation), a feature of fog based on coefficient of variation, in hardware. The proposed hardware is an FPGA implementation of Xilinx's xczu7ev-2ffvc1156 as a target device. As a result of synthesis through the Vivado program, it has a maximum operating frequency of 479.616MHz and shows that real-time processing is possible in 4K UHD environment.

Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower (관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석)

  • Min, Tae-Hong;Yu, Hyeon-Tak;Kim, Hyeong-Jin;Choi, Byeong-Keun;Kim, Hyun-Sik;Lee, Gi-Seung;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.

Study on Effect of Exercise Performance using Non-face-to-face Fitness MR Platform Development (비대면 휘트니스 MR 플랫폼 개발을 활용한 운동 수행 효과에 관한 연구)

  • Kim, Jun-woo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.571-576
    • /
    • 2021
  • This study was carried out to overcome the problems of the existing fitness business and to build a fitness system that can meet the increased demand in the Corona situation. As a platform technology for non-face-to-face fitness edutainment service, it is a next-generation fitness exercise device that can use various body parts and synchronize network-type information. By synchronizing the exercise information of the fitness equipment, it was composed of learning contents through MR-based avatars. A quantified result was derived from examining the applicability of the customized evaluation system through momentum analysis with A.I analysis applying the LSTM-based algorithm according to the cumulative exercise effect of the user. It is a motion capture and 3D visualization fitness program for the application of systematic exercise techniques through academic experts, and it is judged that it will contribute to the improvement of the user's fitness knowledge and exercise ability.

Comparison and analysis of chest X-ray-based deep learning loss function performance (흉부 X-ray 기반 딥 러닝 손실함수 성능 비교·분석)

  • Seo, Jin-Beom;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1046-1052
    • /
    • 2021
  • Artificial intelligence is being applied in various industrial fields to the development of the fourth industry and the construction of high-performance computing environments. In the medical field, deep learning learning such as cancer, COVID-19, and bone age measurement was performed using medical images such as X-Ray, MRI, and PET and clinical data. In addition, ICT medical fusion technology is being researched by applying smart medical devices, IoT devices and deep learning algorithms. Among these techniques, medical image-based deep learning learning requires accurate finding of medical image biomarkers, minimal loss rate and high accuracy. Therefore, in this paper, we would like to compare and analyze the performance of the Cross-Entropy function used in the image classification algorithm of the loss function that derives the loss rate in the chest X-Ray image-based deep learning learning process.

Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics (동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템)

  • Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.183-189
    • /
    • 2021
  • In recent years, active research has been devoted toward developing a monitoring system using ambient vibration data in order to quantitatively determine the deterioration occurring in a structure over a long period of time. This study developed a low-cost edge computing system that detects the abnormalities in structures by utilizing the dynamic characteristics acquired from the structure over the long term for ensemble learning. The system hardware consists of the Raspberry Pi, an accelerometer, an inclinometer, a GPS RTK module, and a LoRa communication module. The structural abnormality detection afforded by the ensemble learning using dynamic characteristics is verified using a laboratory-scale structure model vibration experiment. A real-time distributed processing algorithm with dynamic feature extraction based on the experiment is installed on the Raspberry Pi. Based on the stable operation of installed systems at the Community Service Center, Pohang-si, Korea, the validity of the developed system was verified on-site.

Web based Fault Tolerance 3D Visualization of IoT Sensor Information (웹 기반 IoT 센서 수집 정보의 결함 허용 3D 시각화)

  • Min, Kyoung-Ju;Jin, Byeong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-152
    • /
    • 2022
  • Information collected from temperature, humidity, inclination, and pressure sensors using Raspberry Pi or Arduino is used in automatic constant temperature and constant humidity systems. In addition, by using it in the agricultural and livestock industry to remotely control the system with only a smartphone, workers in the agricultural and livestock industry can use it conveniently. In general, temperature and humidity are expressed in a line graph, etc., and the change is monitored in real time. The technology to visually express the temperature has recently been used intuitively by using an infrared device to test the fever of Corona 19. In this paper, the information collected from the Raspberry Pi and the DHT11 sensor is used to predict the temperature change in space through intuitive visualization and to make a immediate response. To this end, an algorithm was created to effectively visualize temperature and humidity, and data representation is possible even if some sensors are defective.