• Title/Summary/Keyword: Communication Bandwidth

Search Result 2,069, Processing Time 0.03 seconds

Small Epsilon Negative ZOR Antenna with Improved Bandwidth (확장된 대역폭을 갖는 소형 Epsilon Negative ZOR 안테나)

  • Ko, Seung-Tae;Park, Byung-Chul;Park, Jae-Hyun;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.920-926
    • /
    • 2008
  • In this paper, small epsilon negative(ENG) zeroth-order resonance(ZOR) antenna with improved bandwidth is presented. To reduce the size of ENG ZOR antenna without narrowing bandwidth, large shunt inductance is introduced by adding patterns on patch and meandered via. The effective permittivity of meandered via is less dependent of frequency than that of straight via in same size. Thus, ENG ZOR antenna with meandered via has broader bandwidth. As a result, the bandwidth of ENG ZOR antenna with meandered via is 1.38 times as broad as that of spiral ENG ZOR antenna with straight via. On the other hand, the area of ENG ZOR antenna is reduced by 64 % compared with that of conventional mushroom ZOR antenna.

Design of Wideband High Gain Trapezoidal Monopole Antenna using Backside Frequency Selective Surface (후면 주파수 선택 표면을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.473-478
    • /
    • 2021
  • This paper designed a wideband, high gain planar trapezoidal monopole antenna using backside frequency selective surface (FSS) according to the need for wideband and high gain antenna required in various fields such as rapidly increasing wireless communication, autonomous vehicles, 5G wireless communication and wideband applications. The proposed antenna uses a dual metallic to have a structural difference from the existing FSS. By solving the complexity of the design antenna using genetic algorithms (GA) and high frequency structural simulators (HFSS) simulations, the proposed antenna is not only produce a high efficiency but also presents a wide bandwidth of 3.52 to 5.92 GHz and a gain of 10.5 dBi over the entire bandwidth, with the highest gain of 11.8 dBi at 5.1 GHz. It has been confirmed that the gain increased 8.6 dBi as the 36% impedance bandwidth of 1.8 GHz compared to the existing antenna improved to the 50% impedance bandwidth of 2.4 GHz.

Design and Analysis of Microstrip Line Feed Toppled T Shaped Microstrip Patch Antenna using Radial Basis Function Neural Network

  • Aneesh, Mohammad;Kumar, Anil;Singh, Ashish;Kamakshi, Kamakshi;Ansari, J.A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.634-640
    • /
    • 2015
  • This paper deals with the design of a microstrip line feed toppled T shaped microstrip patch antenna that gives dualband characteristics at 4 GHz and 6.73 GHz respectively. The simulation of proposed antenna geometry has been performed using method of moment based IE3D simulation software. A radial basis function neural network (RBFNN) is used for the estimation of bandwidth for dualband at 4 GHz and 6.73 GHz respectively. In RBFNN model, antenna parameters such as dielectric constant, height of substrate, and width are used as input and bandwidth of first and second band is considered as output of the network. To validate the RBFNN output, an antenna has been physically fabricated on glass epoxy substrate. The fabricated antenna can be utilized in S and C bands applications. RBFNN results are found in close agreement with simulated and experimental results.

The Design of a PCS Band Microstrip Patch Antenna with Auxiliary Wire and Annular Gap (보조 도선과 Annular Gap을 추가한 PCS 대역 마이크로스트립 패치 안테나 설계)

  • Choi, Kyoung-Sik;Yoon, Jong-Soeb;Ryu, Mi-Ra;Lee, Won-Hui;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.329-338
    • /
    • 2001
  • In this paper, we designed microstrip patch antenna to enhance the weak point of general microstrip patch antenna that has narrow bandwidth and analyzed that. To reduce reactance in probe feed antenna, capacitive gap added to the patch. Using single patch and auxiliary wire, makes dual frequency resonant. So bandwidth is improved and gain also becomes higher. To verify with experiment, PCS band antenna is designed, fabricated. For PCS band antenna, bandwidth is 180 MHz in VSWR<1.5 and gain is 8.6 dBi.

  • PDF

Design and Fabrication of the Transceiver with 400MHz Bandwidth (400 MHz 대역의 송수신기 설계 및 제작)

  • Hur Chang-Wu;Choi Jun-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.851-856
    • /
    • 2006
  • This paper studies about design of a transceiver using a single PLL. The transceiver has bandwidth of $424.7\sim424.95MHz$ and the communication method used 21 channels 12.5 KHz channel bandwidth and FSK modulation/demodulation method. Also, we designed low power wireless transceiver for data transmission using a single PLL. Finally, the transceiver set achieves the following characteristics : 8.15dBm output power, 45.97dBc spurious property.

Common Spectrum Assignment for low power Devices for Wireless Audio Microphone (WPAN용 디지털 음향기기 및 통신기기간 스펙트럼 상호운용을 위한 채널 할당기술에 관한 연구)

  • Kim, Seong-Kweon;Cha, Jae-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.724-729
    • /
    • 2008
  • This paper presents the calculation of the required bandwidth of common frequency bandwidth applying queueing theory for maximizing the efficiency of frequency resource of WPAN(Wireless Personal Area Network) based Digital acoustic and communication devices. It assumed that LBT device(ZigBee) and FH devices (DCP, RFID and Bluetooth) coexist in the common frequency band for WPAN based Digital acoustic and communication devices. Frequency hopping (FH) and listen before talk (LBT) have been used for interference avoidance in the short range device (SRD). The LBT system transmits data after searching for usable frequency bandwidth in the radio wave environment. However, the FH system transmits data without searching for usable frequency bandwidth. The queuing theory is employed to model the FH and LBT system, respectively. As a result, the throughput for each channel was analyzed by processing the usage frequency and the interval of service time for each channel statistically. When common frequency bandwidth is shared with SRD using 250mW, it was known that about 35 channels were required at the condition of throughput 84%, which was determined with the input condition of Gaussian distribution implying safety communication. Therefore, the common frequency bandwidth is estimated with multiplying the number of channel by the bandwidth per channel. These methodology will be useful for the efficient usage of frequency bandwidth.

Design of Square Patch Reflectarray Antenna with U-type Slot (U자형 슬롯을 갖는 정사각형 패치 리플렉트어레이 안테나의 설계)

  • Kim, Seon-Hye;Choi, Hak-Keun;Park, Jae-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The microstrip reflectarray antenna is rapidly becoming an attractive alternative solution to the traditional parabolic reflector antenna. However, the bandwidth of the microstrip reflectarray using the single layer structure is very narrow. To obtain wide bandwidth characteristic, the microstrip reflectarray using the multi-layer structure has been used, but it has some disadvantages such as high cost and complicated design. In this paper, to obtain low cost and wide bandwidth, the microstrip reflectarray antenna composed of square patch with two U-slots using the single-layer structure is proposed. The proposed antenna demonstrate radiation efficiency closed to 55.5 % and 1 dB gain bandwidth over 14 % at 12.5 GHz.

Design of Broad Bandwidth Dipole Antenna with CMM Feeding Probe Structure (CMM 급전 구조를 가지는 광대역 다이폴 안테나의 설계)

  • Lee, Ji-Chul;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1030-1036
    • /
    • 2010
  • This paper proposes a simulation design for feeding probe with the CMM(Cylindrical Magneto Material) structure for broad bandwidth of a dipole type antenna. In order to ensure low frequency bandwidth, the magnetic material with high relative permeability was considered in design calculation. It was confirmed that the broad bandwidth was independent on the relative permeability value and depended on the control of distance($r_m$) between magnetic material and feeding probe, and of magnetic material thickness($t_m$). Furthermore, an antenna size with the CMM was miniaturized about 18 % comparison with its size without the CMM.

A Study on the Optical Filters Bandwidth with Error Probability in Preamplifier System (전치증폭시스템에서 에러확률에 따른 광 필터의 대역폭에 관한 연구)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3642-3646
    • /
    • 2012
  • In this paper, the bandwidth of the filters used in optical communication systems and systems for the correlation between the error probability has been studied. Preamplifier that occurs in the system error probability as a function of the sensitivity of the receiver on the receiver sensitivity was shown for the various error probability calculation is performed. In addition, the channel data rate on the probability of various errors, changes in the function of the optimal bandwidth for the receiver filter was calculated, as required to operate at optimal range of the filter bandwidth, data rate per channel in a 10Gb/s the range of when is between 0.2 and 3.5nm.

Performance Evaluation of Coalition and Bargaining Games for Efficient and Fair Bandwidth Allocation (효율적이고 공정한 대역폭 할당을 위한 제휴 게임과 협상 게임의 성능 평가)

  • Park, Jae-Sung
    • The KIPS Transactions:PartC
    • /
    • v.17C no.4
    • /
    • pp.385-390
    • /
    • 2010
  • Fair and efficient bandwidth allocation methods using the coalition game theory and the bargaining game theory following the axiomatic approach have been proposed when sending nodes with different traffic input rate try to share the bandwidth. These methods satisfy the axiomatic fairness provided by the mathematical ground of the game theories. However, since the axioms of the two game models are different from one another, the allocated bandwidths to each sending nodes become different even in the same communication environments. Thus, in this paper, we model the bandwidth allocation problem with these game theories, and quantitatively compare and analyze the allocated bandwidth and loss rate of each sending nodes in various communication environments. The results show that the bargaining game allocates relatively less bandwidth to a node with a higher sending rate than that with a lower sending rate while coalition game allocates bandwidth according to the sending rate of each node.