DOI QR코드

DOI QR Code

Performance Evaluation of Coalition and Bargaining Games for Efficient and Fair Bandwidth Allocation

효율적이고 공정한 대역폭 할당을 위한 제휴 게임과 협상 게임의 성능 평가

  • 박재성 (수원대학교 인터넷정보공학과)
  • Received : 2010.06.01
  • Accepted : 2010.06.25
  • Published : 2010.08.31

Abstract

Fair and efficient bandwidth allocation methods using the coalition game theory and the bargaining game theory following the axiomatic approach have been proposed when sending nodes with different traffic input rate try to share the bandwidth. These methods satisfy the axiomatic fairness provided by the mathematical ground of the game theories. However, since the axioms of the two game models are different from one another, the allocated bandwidths to each sending nodes become different even in the same communication environments. Thus, in this paper, we model the bandwidth allocation problem with these game theories, and quantitatively compare and analyze the allocated bandwidth and loss rate of each sending nodes in various communication environments. The results show that the bargaining game allocates relatively less bandwidth to a node with a higher sending rate than that with a lower sending rate while coalition game allocates bandwidth according to the sending rate of each node.

공리적 접근 방법을 이용한 제휴 (Coalition) 게임 이론과 협상 (Bargaining) 게임 이론을 이용하여 다수의 노드가 대역폭을 공유하는 환경에서 각 노드의 트래픽 입력율에 따라 공정하고 효율적으로 대역폭을 할당하는 방안들이 제시되어 왔다. 이들 기법들은 게임 이론이 제공하는 수학적 근거에 따라 공리적 공정성을 만족한다. 그러나 이들 게임들의 공리는 서로 다르기 때문에 동일 통신 환경에서도 각 송신 노드에게 할당되는 대역폭은 달라진다. 따라서 본 논문에서는 이들 게임 이론들을 이용하여 대역폭 할당 문제를 모델링하고 다양한 통신 환경에서 각 게임 기법들에 의해 송신 노드에 할당되는 대역폭과 이로 인한 손실율을 정량적으로 비교 분석하였다. 분석 결과 협상 게임은 입력율이 낮은 노드보다 입력율이 높은 노드에게 상대적으로 대역폭을 적게 할당하고 제휴 게임은 송신 노드들의 입력율에 비례하여 대역폭을 할당한다는 것을 보였다.

Keywords

References

  1. Flavio Bonomi, and Kerry W. Fendick, “The Rate-Based Flow Control Framework for the Available Bit Rate ATM Service,” IEEE Network Magazine, Vol.9, No.2, pp.25-39, 1995. https://doi.org/10.1109/65.372653
  2. Frank Kelly, “Charging and Rate Control for Elastic Traffic,” European Trans. on Telecommunications, Vol.8, pp.33-37, 1998. https://doi.org/10.1002/ett.4460080106
  3. Martin J. Osborne, ‘An Introduction to Game Theory,’ Oxford University Press, 2003.
  4. P. Dubey, “Inefficiency of Nash Equilibria,” Mathematics of operational research, Vol.11, No.1, pp.1-8, 1986. https://doi.org/10.1287/moor.11.1.1
  5. Edilayne Meneses Salgueiro, Paulo R. F. Cunha, Paulo R. M. Maciel, Jose A. S. Monteiro, and Ricardo J. P. B. Salgueiro, “Defining Bandwidth Constraints With Cooperative Games,” in Proc. of ICUMT '09, pp.1-8, 2009.
  6. Haikel Yaiche, Ravi R. Mazumdar, and Catherine Rosenberg, “A Game Theoretic Framework for Bandwidth Allocation and Pricing in Broadband Networks,” IEEE/ACM Trans. on networking, Vol.8, No.5, pp.667-678, 2000. https://doi.org/10.1109/90.879352
  7. Corinne Touati, Eitan Altman, and Jerome Galtier, “Generalized Nash Bargaining Solution for Bandwidth Allocation,” Elsevier Computer networks, Vol.50, No.17, pp.3242-3263, 2006. https://doi.org/10.1016/j.comnet.2005.12.006
  8. M. AOKI, ‘The Co-Operative Game Theory of The Firm,’ Oxford University Press, 1984.
  9. L. S. Shapley,“ A Value for n-Person Games, Contributions to the Theory of Games, Vol.II,” Annals of Mathematics Studies, Vol.28, Princeton University Press, 1953.
  10. J. C. Harsanyi, “Rational Behavior and Bargaining Equilibrium in Games and Social Situations,” Cambridge University Press, 1977.
  11. Martin J. Osborne, Ariel Rubinstein, ‘A course in game theory,’ The MIT Press, 1994.
  12. Zbigniew Dziong, and Lome G. Mason, “Fair-Efficient Call Admission Control Policies for Broadband Networks - A Game Theoretic Framework,” IEEE/ACM Trans. on networking, Vol.4, No.1, pp.123-136, 1996. https://doi.org/10.1109/90.503768
  13. Hongxia Shen, and Tamer Basar, “Differentiated Internet pricing using a Hierarchical Network Game Model,” IEEE American Control Conference, pp.2322-2327, 2004.
  14. L. Zhao, L. Guo, J. Zhang, and J. Zhang, “Game- Theoretic Medium Access Control Protocol for Wireless Sensor Networks,” IET Communications, Vol.3, No.8, pp.1274-1283, August 2009. https://doi.org/10.1049/iet-com.2008.0383
  15. Dust Niyato, and Ekram Hossain, “Cognitive Radio for Next-Generation Wireless Networks: An Approach to Opportunistic Channel Selection in IEEE 802.11-Based Wireless Mesh,” IEEE Wireless Communications Magazine, Vol.16, No.1, pp.46-54, February, 2009. https://doi.org/10.1109/MWC.2009.4804368
  16. Walid Saad, and Zhu Han, Merouane Debbah, Are Hjorungnes, and Tamer Basar, “Coalitional Game Theory for Communication Networks: A Tutorial,” IEEE Signal Processing Magazine, Vol.26, No.5, pp.77-97, September 2009. https://doi.org/10.1109/MSP.2009.000000
  17. E.Altman, T.Boulogne, R.El-Azouzi, T.Jimenez, and L.Wynter, “A survey on networking games in telecommunications,” Computers & Operations Research, Vol.33, pp.286-311, 2006. https://doi.org/10.1016/j.cor.2004.06.005
  18. Mark Felegyhazi, and Jean-Pierre Hubaux, “Game theory in wireless networks: a tutorial,” EPL Technical Report, LACREPORT-2006-002, 2006.