• Title/Summary/Keyword: Commonality And Variability

Search Result 32, Processing Time 0.032 seconds

An approach to analyze commonality and variability of feature based on Ontology in Software Product line Engineering (Software 제품계열공학에서 온톨로지에 기반한 feature의 공통성 및 가변성 분석모델)

  • Kim Jin-Woo;Lee Soon-Bok;Lee Tae-Woong;Baik Doo-Kwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.139-141
    • /
    • 2006
  • 제품계열공학에서 feature diagram(FD)은 개발자의 직관이나 도메인 전문가의 경험에 근거하여 작성되어, feature간의 공통성 및 가변성분석 기준이 불명확하며 비정형적인 feature의 공통성 및 가변성 분석으로 인한 stakeholder의 공통된 이해가 부족한 문제점을 내포하고 있다. 따라서, 본 논문에서는 이를 해결하기 위하여 공통된 feature의 이해를 위해 feature 속성리스트에 기반한 메타 feature모델과 feature간의 의미유사성관계를 이용한 온톨로지를 적용한 공통성 및 가변성 분석모델을 제안한다.

  • PDF

A Study on Software Product-Line Architecture Design Process (소프트웨어 제품계열 아키텍처 설계 프로세스)

  • Oh, Young-Bae
    • Journal of Information Technology Services
    • /
    • v.4 no.2
    • /
    • pp.47-59
    • /
    • 2005
  • S/W product line is a S/W product or a set of S/W system, which has common functions. We can develop a specific S/W product, which satisfiesrequirements of a particular market segment and a mission in a specific domain by reusing the core asset such as the developed S/W architecture through the S/W product line. S/W development methodology based on the S/W product line can develop a S/W more easily and fast by reusing the developed S/W core asset. An advanced country of S/W technology selects S/W product line as a core field of S/W production technology, and support technology development. In case of USA, CMU/SEI (Carnegie Mellon University / Software Engineering Institute) developed product-line framework 4.0 together with the industry and the Ministry of National Defense. Europe is supporting the development of product line technology through ITEA(IT for European Advancement) program. In this paper, we aim to construct reference architecture of S/W product line for production of the S/W product line.

Commonality and Variability Analysis-based Component Modeling Technique (공통성과 가변성 분석 기반의 컴포넌트 모델링 기법)

  • Kim, Su-Dong;Jo, Eun-Suk;Ryu, Seong-Yeol
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.9
    • /
    • pp.920-930
    • /
    • 2000
  • 컴포넌트 기반의 소프트웨어 개발이 소프트웨어 복잡성, 비용, 그리고 품질을 해결하기 위한 새로운 대안으로 소개되고 있다. COM, Enterprise JavaBeans, CORBA 컴포넌트 모델등과 같은 다양한 컴포넌트 아키텍쳐들이 소개되고 있으며 컴포넌트 기반의 소프트웨어 개발 방법론과 여러 CASE 도구들이 이를 지원하고 있다.[1,2,3,4]. 그러나 현재 컴포넌트를 구현할 수 있는 기술은 제시되어 있지만 컴포넌트를 모델링하는 기법들에 대한 연구는 미약한 상태이다. 본 논문에서는 도메인 분석에서 공통성과 가변성 추출 및 클러스터링 기법을 이용한 컴포넌트를 분석하는 기법을 제시한다. 즉 컴포넌트 추출 기법, 컴포넌트의 핫스팟(또는 가변성)표현 기법, 컴포넌트 요구사항 정의 기법 등을 제시한다. 컴포넌트 개발에 있어서 이러한 모델링 기법을 적용함으로써 컴포넌트를 효율적으로 개발할 수 있을 뿐만 아니라 재사용성이 높은 고품질의 컴포넌트 개발을 지원할 수 있다.

  • PDF

A Technique for Analyzing the Gap between in Product Line Engineering Core Asset and Applications (제품계열 공학의 핵심자산과 어플리케이션간의 Gap 분석 기법)

  • 오상헌;김수동;류성열
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.322-324
    • /
    • 2004
  • PLE 방법론은 단일 제품이 아니라 유사한 제품들간의 공통성(Commonality)과 가변성(Variability)을 개발하고 관리하며 소프트웨어 개발 전체 생명주기에 걸쳐 부품을 조립하는 형태로 만들어진다. 또한 PLE 방법론은 재사용 단위가 가장 큰 방법론이기 때문에 최근에는 소프트웨어 업계에서 주목을 많이 받고 있다. 따라서 소프트웨어 재사용 분야가 점점 다양화되면서 어플리케이션의 특성에 적합한 프로세스에 대한 요구가 늘어나고 있다. 어플리케이션 과정은 요구사항 정의에 따라서 설계가 되어야 하고 이렇게 설계가 된 요구사항 정의와 핵심자산의 Gap 분석을 통해 정제된 설계를 얻을 수 있다. 하지만, 현재는 체계적인 절차와 기법에 대한 연구가 많이 미흡한 상태이다. 이렇게 체계적인 절차와 기법이 있다면 어플리케이션을 개발하는데 있어 보다 효율적이고, 보다 완성도 높은 어플리케이션이 개발 될 것이라고 기대한다. 따라서 본 논문에서는 제품계열공학의 핵심자산과 어플리케이션간의 Gap 분석 절차를 제안하고자 한다.

  • PDF

(Domain Design Method to Support Effective Reuse in Component-Based Software Development) (컴포넌트 기반 소프트웨어 개발의 효율적인 재사용성을 지원하기 위한 도메인 설계 방법)

  • 문미경;박준석;염근혁
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.398-413
    • /
    • 2003
  • Component-based Software Development(CBSD) supported by both component and reusability can reduce development time and cost, and also can achieve high productivity. To support component reusability systematically domain analysis and design in parallel with CBSD-process is needed. And also it is needed to suggest objective analysis process to fine out commonality and variability in domain, which is lacked in current domain analysis and design method. And to abstract domain component from the information which is well reflected in domain model, and to express it in domain architecture is needed. In this paper, we suggest the method to define, analyze and design domain systematically for enhancing reusability effectively in Component-base Software Development. We abstract components which can be reusable in domain, in other word, which have commonality from requirement analysis level. We sustain and refine them. And we reflect them to the products of each level. From these process, we can produce the domain component which have commonality. On this basis, we can design domain architecture. In this paper, to produce reusable software we investigate new systematic approach to domain analysis and design from the view point of software reusability.

Development of Ubiquitous Sensor Network Applications based on Software Product Line Approach (프로덕트 라인 기반의 센서 네트워크 응용 소프트웨어 개발)

  • Kim, Young-Hee;Lee, Woo-Jin;Choi, Il-Woo
    • The KIPS Transactions:PartA
    • /
    • v.14A no.7
    • /
    • pp.399-408
    • /
    • 2007
  • Currently various techniques for efficiently developing sensor network applications are developed. However, these techniques provide the method for developing only single sensor network application easily and rapidly. Since sensor network applications control various sensor nodes based on core components of operating system, the technique to develop applications by defining common functionalities of various applications and selecting variable functionalities according to the work flow of specific application is efficient. Accordingly, this paper presents an experimental study that identifies commonality of sensor network application domain and supports optional development according to the variability of application by applying product line approach to developing sensor network application. Through the experimental study, we describe the characteristics of sensor network application domain compared with general business domain for product line development. Also, we show the effectiveness of the proposed approach by presenting that core assets designed using the proposed variability feature model and VEADL are reused according to the functionalities of each sensor node.

SW Convergence Strategy in Manufacturing/Service Industry : Software and Systems Product Line(SSPL) (제조/서비스 산업의 소프트웨어 융복합 전략 : 소프트웨어 및 시스템 프로덕트라인(SSPL))

  • Lee, Jihyun;Kee, Chang Jin;Kim, Deogtae;Kim, Changsun;Choi, Jongsup;Lee, Danhyung
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.295-308
    • /
    • 2012
  • Software and Systems Product Line(SSPL) is a paradigm that has been developed and applied by European Union(EU) to achieve the productivity and competitiveness of EU industries on the world market. It is not just a simple system or software development methodology, but a sophisticated technology requiring capabilities for a high level of mass customization, platforms, processes and convergence of software and systems. EU has applied SSPL for the five selected industrial sectors including aerospace, automobile, medical equipment, consumer electronics and telecommunication equipment since 1990s and led the way to other industry sectors to stimulate the application of SSPL from 2006. In order for Korea to secure competitiveness in the manufacturing and service industries in the competitive borderless market, it is essential to gain the high level of capabilities for software development and convergence of software and systems. SSPL can be a powerful means to achieve this end. This paper discusses the paradigmatic concept of SSPL, how EU's major industries and companies have secured competitiveness through SSPL, key capabilities that are necessary for successful institutionalization of SSPL in Korea, and finally suggestions on core strategies to materialize the benefits of SSPL for Korea.

Modeling Traceability Between Software Product Line Requirements and Architecture (소프트웨어 제품 라인의 요구사항과 아키텍처 간 추적성 모델링)

  • Eom, Seokhwan;Kang, Sungwon;Kim, Jingyu;Lee, Seonah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.487-498
    • /
    • 2015
  • Traceability enables software developers to trace up the changes occurring in software artifacts. In software product line, traceability is more complex than traceability in a single product as commonality and variability should be considered. Modeling traceability between features and requirements has been proposed in the past. However, traceability between requirements and architecture has more factors to consider, including many-to-many mappings and hierarchical structure of architectures. This paper proposes a method of systematically constructing platform traceability between platform requirements and platform architecture. This paper also shows the efficacy of the proposed mechanism through case studies.

A Method for Deriving an Optimal Product Feature Configuration Considering Feature Interaction (상호작용을 고려한 최적의 제품휘처형상 도출 방법)

  • Lee, Kwanwoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Many product line engineering methods use the feature model to structure commonality and variability among products in terms of features and to derive a product feature configuration, which is the set of features required for the development of a product. Features to be selected during product derivation are mainly determined based on the quality attributes required for a product. Most methods published so far derived an optimal product feature configuration through linear co-relationship between features and quality attributes. However, the co-relationship between features and quality attributes can be formulated as a non-linear function because of feature interactions. This paper proposes a method that derives an optimal product feature configuration considering feature interactions. Four product line cases are used to validate the proposed methods.

Efficient Code-based Software Product Line Regression Testing (효율적인 소프트웨어 제품라인 회귀시험을 위한 자동화된 코드 기반 시험 방법)

  • Jung, Pilsu;Kang, Sungwon
    • Journal of Software Engineering Society
    • /
    • v.29 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Software product line development is a development paradigm that efficiently develops a product family by avoiding redundant development based on separation of the common part and the variable part of the product family. In software product line development, the source code that is used to produce a product family is called a product line code base, and when the product line code base is changed and the products of the product family are affected by the change, the activity of testing the affected products is called a product line regression testing. For product line regression testing, instead of conducting regression testing individually on each product of the product family, a more efficient regression testing would be possible if unnecessary testing that are irrelevant to the change can be avoided. This paper introduces SRTS, which is an automated method to efficiently perform software product line regression testing. SRTS divides the product line code base and test cases based on commonality and variability. Then SRTS identifies and selects the test cases affected by the change. Finally, it reduces unnecessary testing by rerunning only the selected test cases.