• 제목/요약/키워드: Common-rail Fuel Injection System

검색결과 137건 처리시간 0.026초

탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구 (A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis)

  • 안성찬;이상돈;손정호;조용주
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구 (A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System)

  • 이진욱;조규백;김홍석;정용일
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

커먼레일 엔진에서 노킹 진단 알고리즘 구현 및 OBD-II 진단기 S/W 설계 방안 (Implement of Knocking diagnostic algorithm and design of OBD-II Diagnostic system S/W on common-rail engine)

  • 김화선;장성진;남재현;장종욱
    • 한국정보통신학회논문지
    • /
    • 제16권11호
    • /
    • pp.2446-2452
    • /
    • 2012
  • 국내외의 배출가스 규제 강화에 부합하기위하여, 사용자 의도에 따른 연료 분사시기와 분사량 조절이 가능한 커먼레일 ECU를 제어할 수 있는 알고리즘 개발의 필요에 따라서 본 논문에서는 커먼레일 엔진 전용 ECU에 적용할 수 있는 노킹 판별 및 엔진 밸런스 보정이 가능한 노킹 진단 알고리즘을 구현하여 시뮬레이터로 개발하였다. 또한 운전자가 직접 차량을 진단하는 운전자 중심의 진단 서비스를 제공하고자 시뮬레이터의 결과를 OBD-II 표준에 의거하는 차량 위주의 진단기로 개발하고자 한다. 이를 위해 자동차 고장진단 신호 및 센서 출력 신호를 송수신하는 유선 시스템과 무선 시스템인 블루투스 모듈을 이용하여 실시간 통신이 제공될 수 있는 OBD-II 진단기 S/W 설계방안을 제안함으로써 차량의 연비향상 및 유해가스 저감을 통한 엔진의 효율성 향상을 실현하도록 한다.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구 (Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve)

  • 오병걸;이민광;박영섭;이강윤;선우명호;남기훈;조성환
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

CO2를 포함한 Simulated-EGR 압축착화엔진에서 당량비 변화에 따른 성능 예측 (Performance Prediction according to Equivalence Ratio Change in Simulated-EGR Compression Ignition Engine Containing CO2)

  • 서현규
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.21-26
    • /
    • 2020
  • The objective of this work is to numerically reveal the effect of equivalence ratio change on the simultaneous reduction of NOX and soot emissions from the simulated-EGR compression ignition engine containing CO2. An experiment was conducted by using a single-cylinder common-rail injection system engine, an intake control system, and exhaust emissions analyzers. The numerical analysis results were validated under the same experimental conditions. To investigate the effect of equivalence ratio by simulated-EGR containing CO2, the O2, N2, and CO2 mole fraction were changed in the initial air conditions to the cylinder. The results were analyzed in terms of peak cylinder pressure, indicated mean effective pressure, indicated specific nitrogen oxide, and indicated specific soot. It was revealed that ignition delay characteristics and heat release rate (ROHR) characteristics were not significantly different according to the equivalence ratio. However, as the equivalence ratio increased from 0.68 to 0.83, the maximum combustion pressure and IMEP decreased by about 6.5% and 9.4%, respectively. In the case of ISFC, as is well known, the trend is opposite of IMEP. In the case of ISNO, as the equivalence ratio increased, less NO was generated, and as the equivalence ratio increased by 0.05, the ISSoot value of about 10% increased.

대형 디젤 엔진에서 JP-8 과 디젤 적용 시의 배기 배출물 특성에 대한 이해 (Understanding Pollutant Emission in a Heavy-Duty Diesel Engine with JP-8 and Diesel)

  • 이진우;배충식
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1375-1381
    • /
    • 2011
  • 커먼레일 분사 시스템이 장착된 대형 단기통 가시화 엔진에서 디젤과 JP-8 의 연소 및 배기 특성을 분석하였다. 두 연료 적용 시, 배기 배출 경향을 분석하기 위해 직접 화염가시화와 이색법을 적용하였다. 연소 과정은 직접 화염 가시화로부터 화염 강도 분석을 통해 이루어 졌다. 이색법 결과는 화염 온도 및 KL 값을 도출하여 분석을 하였다. 직접 화염 가시화 결과, JP-8 연소 시, 점화 지연 기간이 길며, 디젤 연소에 비해 화염이 빠르게 소멸되는 것을 확인하였다. 화염 강도 분석을 통해 디젤 연소의 경우, 연소 전 기간에 걸쳐 높은 화염 강도 수준을 유지하며 화염 지속 기간이 긴 것을 알 수 있었다. 이색법 결과를 통해, JP-8 연소의 경우, 국부적으로 고온의 화염 면이 더 많이 분포하는 것을 확인하였으며, 이는 $NO_x$가 더 많이 배출된 경향을 설명해준다. 또한 KL 치 분석 결과, JP-8 연소 시 낮은 수준의 KL 값이 더 고르게 분포하는 것을 알 수 있었으며, 이는 JP-8 연소 시 스모크 가 덜 배출된 결과를 뒷받침 해준다.