• Title/Summary/Keyword: Common-cause failure

Search Result 243, Processing Time 0.032 seconds

New paradigm of common cause human behavior error domain in human-software interation

  • Park, P.;Lee, K.S.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.84-89
    • /
    • 1992
  • This study is to develop a cognitive paradigm including a new model of common cause human behavior error domain and to analyze their causal factors and their properties of common cause huamn error characteristics in software engineering.l A laboratory study was performed to analyze the common causes of human behavior domain error in software develoment and to indentify software design factors contributing to the common cause effects in common cause failure redundancy. The results and analytical paradigm developed in this resuarch can be applied to reliability improvement and cost reduction in software development for many applications. Results are also expected to provide training guideliness for software engineers and for more effective design of ultra-high reliabile software packages.

  • PDF

On Reliability Performance of Safety Instrumented Systems with Common Cause Failures in IEC 61508 Standard (공통원인고장을 고려한 안전제어시스템의 신뢰성 평가척도에 관한 고찰 : IEC 61508을 중심으로)

  • Seo, Sun-Keun
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.405-415
    • /
    • 2012
  • The reliability performance measures for low and high or continuous demand modes of operation of safety instrumented systems(SISs) are examined and compared by analyzing the official definitions in IEC 61508 standard. This paper also presents a status of common cause factor(CCF) models used in IEC 61508 and problems relating CCF modelling are discussed and ideas to solve these ones are suggested. An example with mixed M-out-of-N architecture is carried out to illustrate the proposed methods.

Common Cause Failure Problems in Ultra-High Reliability Systems-A View Point on Common Cause Internal Effects and Statistical Principles (초신뢰성 시스팀에서의 공통원인 실패문제-공통원인의 내부적 효과 및 통계학적 원리의 관점에서)

  • Park, P.;Ko, K.H.;Kim, C.S.;Kim, H.K.;Oh, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1993
  • This study involves a Common Cause Failure (CCF) problem on the ultra-high reliability required system development such as war game operations, nuclear power control, air traffic control, space shuttle missions, and large scale network communication system. The system situation problems are defined according to CCF, reliability and system fault identifications for the development cast verifications in the multi-version redundant software system. Then, CCF analysis of redundant system, system principles and statistical dependence are also described. This validation oh the CCF in the human software interaction system will notify software engineers to conceive what really is CCF contribution factor, not only the internal but the external ones.

A Quantitative Study on Important Factors of the PSA of Safety-Critical Digital Systems

  • Kang, Hyun-Gook;Taeyong Sung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.596-604
    • /
    • 2001
  • This paper quantitatively presents the effects of important factors of the probabilistic safety assessment (PSA) of safety-critical digital systems. The result which is quantified using fault tree analysis methodology shows that these factors remarkably affect the system safety. In this paper we list the factors which should be represented by the model for PSA. Based on the PSA experience, we select three important factors which are expected to dominate the system unavailability. They are the avoidance of common cause failure, the coverage of fault tolerant mechanisms and software failure probability. We Quantitatively demonstrate the effect of these three factors. The broader usage of digital equipment in nuclear power plants gives rise to the safety problems. Even though conventional PSA methods are immature for applying to microprocessor-based digital systems, practical needs force us to apply it because the result of PSA plays an important role in proving the safety of a designed system. We expect the analysis result to provide valuable feedback to the designers of digital safety- critical systems.

  • PDF

Risk Evaluation of Failure Cause for FMEA under a Weibull Time Delay Model (와이블 지연시간 모형 하에서의 FMEA를 위한 고장원인의 위험평가)

  • Kwon, Hyuck Moo;Lee, Min Koo;Hong, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.83-91
    • /
    • 2018
  • This paper suggests a weibull time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). Assuming three types of loss functions for delayed time in failure cause detection, the risk of each failure cause is evaluated as its occurring frequency and expected loss. Since the closed form solution of the risk metric cannot be obtained, a statistical computer software R program is used for numerical calculation. When the occurrence and detection times have a common shape parameter, though, some simple results of mathematical derivation are also available. As an enormous quantity of field data becomes available under recent progress of data acquisition system, the proposed risk metric will provide a more practical and reasonable tool for evaluating the risks of failure causes in FMEA.

Causal factors and symptoms of human behavior error domain in human-foftware interaction

  • Park, P.;Lee, K.S
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.35-45
    • /
    • 1992
  • This study is to define a congitive paradigm including a new model of common cause human behavior error domain and to analyze their causal factors and their properties of common cause human error characteristics in software engineering. A laboratory study was performed to analyze the common causes of human behavior domain error in software development and to identify software design factors contributing to the common cause effects in common cause failure redundancy. The results and analytical paradigm developed in this research can be applied to reliabbility improvement and cost reduction in software development for many applications. Results are also expected to provide training guidelines for software engineers and for more effective design of ultra-high reliable software packages.

  • PDF

Comprehensive Cumulative Shock Common Cause Failure Models and Assessment of System Reliability (포괄적 누적 충격 공통원인고장 모형 및 시스템 신뢰도 평가)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.320-328
    • /
    • 2011
  • This research proposes comprehensive models for analyzing common cause failures (CCF) due to cumulative shocks and to assess system reliability under the CCF. The proposed cumulative shock models are based on the binomial failure rate (BFR) model. Six kinds of models are proposed so as to explain diverse cumulative shock phenomena. The models are composed of the initial failure probability, shape parameter, and the total shock number. Some parameters of the proposed models can not be explicitly estimated, so we adopt the Expectation-maximization (EM) algorithm in order to obtain the maximum likelihood estimator (MLE) for the parameters. By estimating the parameters for the cumulative shock models, the system reliability with CCF can be assessed sequentially according to the number of cumulative shocks. The result can be utilizes in dynamic probabilistic safety assessment (PSA), aging studies, or risk management for nuclear power plants. Replacement or maintenance policies can also be developed based on the proposed model.

Probabilistic Safety Assessment of Nuclear Power Plants Using Alpha Factor Method for Common Cause Failure (알파모수 공통원인고장 평가 기법을 활용한 원자력발전소 안전성 평가)

  • Hwang, Seok-Won
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.51-55
    • /
    • 2014
  • Based on the results of Probabilistic Safety Assessment(PSA) for a Nuclear Power Plant (NPP), Common Cause Failure(CCF) events have been recognized as one of the main contributors to the risk. Also, the CCF data and estimation method used in domestic PSA models have been pointed out as an issue with respect to the quality. The existing method of MGL and non-staggered testing even widely used were considered conservative in estimating the safety and had a limited capability in uncertainty analyses. Therefore, this paper presents the CCF estimation using a new generic data source and Alpha factor method. The analyses showed that Alpha factor and staggered method are effective in estimating the CCF contribution and risk insights of reference plant. This method will be a common bases for the optimization of new design for the construction plants as well as for the updating of safety assessment on the operating nuclear power plants.