New Paradign of Comon Cause Husan Behavior Error Domain
in Human-Software Interaction

Peom Parkt, Kwan Suk Lee¥
1 Department of Industrial Engineering, Incheon University,
F Department of Industrial Engineering, Honglk University

ABSTRACT

This study is to develop a cognitive paradigm including a new
model of common cause human behavior error domain and to analyze
their causal factors and their properties of common cause human
error characteristics in software engineering.

A laboratory study was performed to analyze the common causes
of human behavior domain error in software development and to
identify software design factors contributing to the common cause
effects in common cause failure redundancy.

The results and analytical paradigm developed in thlS research
can be applied to reliability improvement and cost reduction in
software development for many applications. Results are also
expected to provide training guidelines for software engineers
and for more effective design of ultra-high reliabile software

packages.
I. INTRODUCTION
This study introduces the analysis and a new domain paradigm of

common-cause human behavior error in human-software interaction.

This study is concerned with common-cause human behavior domain

errors during software system development. This includes the
contents, conditions, and their characteristics in human
software interaction. It also concerns interactions between the

human, who is presumed responsible for overseeing the software
system, usage of the software system and software development.
Since the software components are not independent of each other
in regard to failure behavior, software redundancy does not
improve reliability except in multi-version software development.
Multi-version software system development is often requested to
improve of reliability, especially in ultra-high reliability

— 84 -



systems such as nuclear power control, air traffic control, space
shuttle missions, and war games. The major common—-cause human
behavior domain errors found in this research can contribute
strongly to internal common-cause failure effects in a multi-
version software development project.

The common-cause error model includes three analytical
reasoning categories and a common-cause function established in
terms of human-software information processing systems, human
error mechanisms, and cognitive control domains. It is used to
characterize the human factors mechanisms behind typical
categories of errors considered as occurrences of human-software
task mismatches.

Recently, Deborah Mitta(Mitta, 1991) presented a methodology
for quantifying expert system usability which is considered from
a designer’s prospective. A linear multivariate function for
measuring usability is described and procedures for selecting
function variables are provided. Thé usefulness of the usability
function as a design tool is investigated. The six variables for
expert useability are: user confidence, the user’s perception of
difficulty, correctness of solution, the number of responses
required of users, inability of expert system to provide a
solution, rate of help requests. dJens Rasmussen(Rasmussen, 1987)
classified cognitive control domains: skill, rule, and knowledge
based behavior. He also described psychological mechanisms in the
area of human-task mismatches. Modeling and predicting human
error was studied by David D. Woods(Woods, 1990). This research
included a limited rationality approach and some directions in
error modeling. James Reason(Reason, 1987) studied a general
framework for 1locating the principal 1limitations and biases
giving rise to the more predictable varieties of human error.



ANALYSIS OF
r} SOFTWARE TASK
RELIABILITY

G =

IDENTIFICATION

COMMON-CAUSE
ERROR CONTROL [
MECHANISM

PATTERN
RECOGNITION

AoOomAxomMm

rTrooo-<«<o=x v

mMmonc>»>0 ZzoxzT2oo

BEHAVIOR

DOMAIN COMMON-CAUSE
PREVENTION —9
METHODS

%

HUMAN-SOF TWARE INFORMATION PROCESSING
KNOWLEDGE-BASED ENGINEERING
CONCURRENT & INTELLIGENT DESIGN

Figure 1. Schematic Design Scheme of the Common Cause Model

Three types of error were identified: skill-based, rule-based,
and knowledge-based mistakes.

The mission of a specific software development project is to
set up system components of human-software interaction. Each
configuration is composed of a computer work station, a Central
Operating Processor (COP) whose computer assigns and controls all
work at the local working stations, and a Multi-Version Software
(MVS) development load. One approach to software design research
using such a system that tends to be expensive, is to install two
independent versions of MVS developed by two completely separate
software development teams/engineers. The common-cause effect
affected by internal common-cause human domain errors is
determined using redundant components in this case.

This study deals with the problem of common-cause human

— 86 —



behavior domain error in human-software interaction, that is, the
major causal factors in common-cause failure effects on the multi

version software development.

II. A COMMON CAUSE MODEL AND HUMAN BEHAVIOR ERROR DOMAIN

The common-cause model can be used to define internal common
cause human-based error and to develop a common—-cause exrror
control mechanism for human-software interaction. It can be
explained in terms of four schematic and systematic design
stages, as illustrated in Figure 1. The stages are as follows:
(1) Human-software interaction components: These system
components are the basic elements and factors in human-software
interaction. They are: the human working as a software engineer,
software as a operating system, and hardware as a system work
station. The common-cause error occurs in system interactions
involving failures among these system components.
(2) Common-cause error protocol: Common-cause error protocol 1is
the actual 1location and identification of common-cause error
attributed to a common-cause effect in a redundant system of
multi-version software development. It is distinguished within
a given common-cause error mode by its individual identification,
by a pattern recognition, and by a behavior domain.
(3) Common-cause error function: This is the function of common
cause error revealed 1in the existence and the performance
allocation of each common-cause error mode using an evaluation
typically by three variables such as frequency or error
occurrence, error correction time, and point of error occurrence
in time.
(4) Common-cause analysis, representation, and system redesign:

This stage consists of the analysis and representation of common-

— 87 —



cause error in human-software interaction. Several analytical
methods have been provided to define common-cause human domain
error, and to redesign the system interaction with
representational results and prevention schemes involved with
system development productivity, and common-cause error control

mechanisms.

The common-cause function 1is shown in the existence and

in performance allocation of common-cause failure with
its identification(:I_1i), pattern recognition(:P_j), and
behavior domain(:B_k) of common-cause error mode. Each

allocated common cause error mode is evaluated by performance
variables using common-cause error frequency(:F_1i,3j,k),
error correction time(:C_i, j,k), point of error occurrence
in time(:0_i,j,k) during the software development period. The
common-cause function, C_r is:

C_r = c(I_i(F_i,c_i,0_i), P_3j(F_3,c_3,0_3), B_X(F_k,C_k,0_k))

The common-cause function consists of these three reasoning
factors of common-cause error mode, identification, pattern
recognition, and behavior domain of common-cause error mode.
Certain common-cause errors have these three different axes of
reasoning modes, with which can be evaluated by the three
subjects’ performance variables, frequency, correction time, and
point of occurrence in time, using the appropriate portion of the

total amount of collected data relating to all errors.

II. CONCLUSION

The new paradigm and experimental procedures showed dufing the
study were to analyze common-causes of software development
related to human behavior error domain and to identify

software design factors contributing to common types of error

— 88 —



occurring in human-software interaction.

Therefore, characteristics and properties of new design
paradigm can be applied to improving reliability of software
development and to providing guidelines for design of software

development.

REFERENCES

Boehm, B. W., TRW. "Improving Software Productivity." Computer,
Sep. 1987, p. 43-57.

Curtis, B. "Human Factors in Software Development." IEEE, Cat.
No. EHO 185-9, 1981l.

Endres, Albert. "An Analysis of Errors and Their Causes in System

Programs." IEEE Transactions on Software Engineering, June 1975,
p. 140-149.
Mitta, Deborah. "A Methodology for Quantifying Expert System

Usability." Human Factors, 1991, 33(2), p. 233-245.

Musa, J.D., A.Iannino, K. Okumoto. Software Reliability
Measurement, Prediction, Application. McGraw-Hill Com., New York,
1987, p.77-101.

Park, Peom, S. K. Adams, Way Kuo. " Human Reliability and Common
Cause Analysis in Software Engineering Quality Control."”
Proceeding of The 6th Asia Quality Control Symposium, Seoul,
July, 1992, p.72-87.

Park, Peom. "Common-Cause Analysis in Human-Software Interaction:
System Design, Error Control Mechanisnm, and Prevention."
Unpublished doctoral dissertation, Iowa State U, Ames, Iowa,
U.S.A., Jan. 1992.

Peters, G. "Human Error: Analysis and Control." Journal of the
ASSE, Jan. 1966.

Rasmussen, J., K. Duncan, J. Leplat. "Cognitive Control and Human
Error" New Technology and Human Error. John Wiley & Sons, 1987,
p. 53-61.

Reason, James. "Generic Error-Modelling System(GEMS): A Cognitive
Framework for Locating Common Human Error Forms." New Technology
and Human Error, Ed. by J. Rasmussen, K. Duncan and J. Leplat,
John Wiley & Sons. Ltd, 1987, p. 63-83.

Woods, D.D. "Modeling and Predicting Human Error." Human
Performance Models for Computer-Aided Engineering, Ed. by J. I.
Elkind, Academic Press, Inc., 1990.

Youngs, Edward A. "Human Errors in Programming.” Human Factors in
Software Development: COMPSACS81,

— 89 —



