• Title/Summary/Keyword: Commercial probiotics

Search Result 85, Processing Time 0.022 seconds

Evaluation of Fermented Sausages Manufactured with Reduced-fat and Functional Starter Cultures on Physicochemical, Functional and Flavor Characteristics

  • Kim, Young Joo;Park, Sung Yong;Lee, Hong Cheol;Yoo, Seung Seok;Oh, Se Jong;Kim, Hyeong Sang;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.346-354
    • /
    • 2014
  • Fermented foods with probiotics having functional properties may provide beneficial effects on health. These effects are varied, depending on the type of lactic acid bacteria (LAB). Different probiotic LAB might have different functional properties. Thus, this study was performed to evaluate the quality of fermented sausages manufactured with functional starter cultures (Lactobacillus plantarum 115 and 167, and Pediococcus damnosus L12) and different fat levels, and to determine the optimum condition for the manufacture of these products. Medium-fat (~15%) fermented sausages reduced the drying time and cholesterol contents, as compared to regular-fat counterparts. In proximate analysis, the contents of moisture and protein of regular-fat products were lower than medium-fat with reduced fat content. The regular-fat products also had a lighter color and less redness, due to reduced fat content. Approximately 35 volatile compounds were identified in functional fermented sausages, and hexanal, trans-caryophyllene, and tetradecanal were the major volatile compounds. Selected mixed starter culture showed the potential possibility of replacing the commercial starter culture (LK30 plus) in flavor profiles. However, medium-fat fermented sausage containing selected mixed starter culture tended to be less acceptable than their high-fat counterparts, due to excess dry ring developed in the surface. These results indicate that the use of combinations of L. plantarum 115 and 167, and P. damnosus L12 as a starter culture, will prove useful for manufacturing the fermented sausage.

Glycosaminoglycan Degradation-Inhibitory Lactic Acid Bacteria Ameliorate 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

  • Lee, Bo-Mi;Lee, Jung-Hee;Lee, Hye-Sung;Bae, Eun-Ah;Huh, Chul-Sung;Ahn, Young-Tae;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.616-621
    • /
    • 2009
  • To evaluate the effects of lactic acid bacteria (LAB) in inflammatory bowel diseases (IBD), we measured the inhibitory effect of several LAB isolated from intestinal microflora and commercial probiotics against the glycosaminoglycan (GAG) degradation by intestinal bacteria. Bifidobacterium longum HY8004 and Lactobacillus plantarum AK8-4 exhibited the most potent inhibition. These LAB inhibited colon shortening and myeloperoxidase production in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitic mice. These LAB also blocked the expression of the proinflammatory cytokines, IL-$1{\beta}$ and TNF-$\alpha$, as well as of COX-2, in the colon. LAB also blocked activation of the transcription factor, NF-${\kappa}B$, and expression of TLR-4 induced by TNBS. In addition, LAB reduced the TNBS-induced bacterial degradation activities of chondroitin sulfate and hyaluronic acid. These findings suggest that GAG degradation-inhibitory LAB may improve colitis by inhibiting inflammatory cytokine expression via TLR-4-linked NF-${\kappa}B$ activation and by inhibiting intestinal bacterial GAG degradation.

Safety Evaluation of Bifidobacterium breve IDCC4401 Isolated from Infant Feces for Use as a Commercial Probiotic

  • Choi, In Young;Kim, Jinhee;Kim, Su-Hyeon;Ban, O-Hyun;Yang, Jungwoo;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.949-955
    • /
    • 2021
  • Previously, our research group isolated Bifidobacterium breve IDCC4401 from infant feces as a potential probiotic. For this study, we evaluated the safety of B. breve IDCC4401 using genomic and phenotypic analyses. Whole genome sequencing was performed to identify genomic characteristics and investigate the potential presence of genes encoding virulence, antibiotic resistance, and mobile genetic elements. Phenotypic analyses including antibiotic susceptibility, enzyme activity, production of biogenic amines (BAs), and proportion of D-/L-lactate were evaluated using E-test, API ZYM test, high-performance liquid chromatography (HPLC), and D-/L-lactic acid assay respectively. The genome of B. breve IDCC4401 consists of 2,426,499 bp with a GC content of 58.70% and 2,016 coding regions. Confirmation of the genome as B. breve was provided by its 98.93% similarity with B. breve DSM20213. Furthermore, B. breve IDCC4401 genes encoding virulence and antibiotic resistance were not identified. Although B. breve IDCC4401 showed antibiotic resistance against vancomycin, we confirmed that this was an intrinsic feature since the antibiotic resistance gene was not present. B. breve IDCC4401 showed leucine arylamidase, cystine arylamidase, α-galactosidase, β-galactosidase, and α-glucosidase activities, whereas it did not show production of harmful enzymes such as β-glucosidase and β-glucuronidase. In addition, B. breve IDCC4401 did not produce any tyramine, histamine, putrescine, cadaverine, or 2-phenethylamine, which are frequently detected BAs during fermentation. B. breve IDCC4401 produced 95.08% of L-lactate and 4.92% of D-lactate. Therefore, our findings demonstrate the safety of B. breve IDCC 4401 as a potential probiotic for use in the food industry.

Effects of Bacillus SW1-1 coated diets on innate immunity and disease resistance of olive flounder Paralichthys olivaceus against Edwardsiella tarda infection

  • Kim, Min-Gi;Gunathilaka, Buddi E.;Lee, Sungho;Kim, Youjeong;Lee, Kyeong-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.243-249
    • /
    • 2022
  • Bacillus SW1-1 is a probiotic isolated from shrimp intestines. We investigated the effects of Bacillus SW1-1 coated diets on the growth, feed utilization, innate immunity, hematological parameters and resistance to Edwardsiella tarda in olive flounder (Paralichthys olivaceus). A commercial diet was used as the control (AP0) and two other diets were prepared by coating 0.25% (AP25) or 0.50% (AP50) probiotic powder which contains 1.0 × 107 CFU/g Bacillus SW1-1. Four replicate groups of olive flounder (153 ± 2 g) were fed one of the diets for 12 weeks. Growth performance and feed utilization of the fish were not significantly affected by the dietary Bacillus SW1-1. After the challenge with E. tarda, AP50 group showed significantly higher survival than AP0 and AP25 groups. Innate immunity and anti-oxidant capacity of the fish were not significantly affected after the feeding trial. However, after the E. tarda challenge, the innate immune parameters (immunoglobulin, lysozyme and anti-protease) were significantly improved in fish fed AP25 and AP50 diets compared to those in fish fed AP0 diet. After the challenge test, significantly lower glucose level was observed in AP50 group compared to AP0 group. These results indicate that dietary supplementation of Bacillus SW1-1 could increase the disease resistance of olive flounder against E. tarda infection. The optimum coating levels of Bacillus SW1-1 needs to be further elucidated.

Role and functions of micro and macro-minerals in swine nutrition: a short review

  • Vetriselvi Sampath;Shanmugam Sureshkumar;Woo Jeong Seok;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.479-489
    • /
    • 2023
  • Livestock production depends on the utilization of nutrients, and when this is accomplished, there is accelerated momentum toward growth with a low cost-to-feed ratio. Public concern over the consumption of pork with antibiotic residues in animals fed antibiotic growth promoters (AGP) has paved the way for using other natural additives to antibiotics, such as herbs and their products, probiotics, prebiotics, etc. Numerous feed additives are trending to achieve this goal, and a classic example is vitamins and minerals. Vitamins and minerals represent a relatively small percentage of the diet, but they are critical to animal health, well-being, and performance; both play a well-defined role in metabolism, and their requirements can vary depending on the physiological stage of the animals. At the same time, the absence of these vitamins and minerals in animal feed can impair the growth and development of muscles and bones. Most commercial feeds contain vitamins and trace minerals that meet nutrient requirements recommended by National Research Council and animal feeding standards. However, the potential variability and bioavailability of vitamins and trace elements in animal feeds remain controversial because daily feed intake varies, and vitamins are degraded by transportation, storage, and processing. Accordingly, the requirement for vitamins and minerals may need to be adjusted to reflect increased production levels, yet the information presented on this topic is still limited. Therefore, this review focuses on the role and function of different sources of minerals, the mode of action, the general need for micro and macro minerals in non-ruminant diets, and how they improve animal performance.

Characterization of L-(+)-Lactic Acid Producing Weizmannia coagulans Strains from Tree Barks and Probiogenomic Evaluation of BKMTCR2-2

  • Jenjuiree Mahittikon;Sitanan Thitiprasert;Sitanan Thitiprasert;Naoto Tanaka;Yuh Shiwa;Nitcha Chamroensaksri;Somboon Tanasupawat
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.403-415
    • /
    • 2023
  • This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.

Heat-Treated Paraprobiotic Latilactobacillus sakei KU15041 and Latilactobacillus curvatus KU15003 Show an Antioxidant and Immunostimulatory Effect

  • Jun-Hyun Hyun;Im-Kyung Woo;Kee-Tae Kim;Young-Seo Park;Dae-Kyung Kang;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.358-366
    • /
    • 2024
  • The lactic acid bacteria, including Latilactobacillus sakei and Latilactobacillus curvatus, have been widely studied for their preventive and therapeutic effects. In this study, the underlying mechanism of action for the antioxidant and immunostimulatory effects of two strains of heat-treated paraprobiotics was examined. Heat-treated L. sakei KU15041 and L. curvatus KU15003 showed higher radical scavenging activity in both the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays than the commercial probiotic strain LGG. In addition, treatment with these two strains exhibited immunostimulatory effects in RAW 264.7 macrophages, with L. curvatus KU15003 showing a slightly higher effect. Additionally, they promoted phagocytosis and NO production in RAW 264.7 cells without any cytotoxicity. Moreover, the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 was upregulated. These strains resulted in an increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the nuclear factor-κB and mitogen-activated protein kinase signaling pathways were stimulated by these strains. These findings suggest the potential of using L. sakei KU15041 and L. curvatus KU15003 in food or by themselves as probiotics with antioxidant and immune-enhancing properties.

Impact of Prebiotic on Viability of Lactiplantibacillus plantarum D-2 by Encapsulation through Spray Drying and Its Commercialization Potential

  • Changheon Lee;Daeung Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1051-1058
    • /
    • 2024
  • This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96℃). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25℃. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.

Quality Properties of Brand Pork (브랜드화된 돈육의 품질 특성)

  • Jin, Sang-Keun;Kim, Il-Suk;Lee, Jae-Ryong;Shin, Teak-Soon
    • the MEAT Journal
    • /
    • s.36 summer
    • /
    • pp.41-60
    • /
    • 2009
  • This study was carried out to investigate the quality characteristics of brands pork: a crossbred between Korean native and wild pigs (Y), a commercial LYD breed fed with probiotics (J), and a commercial LYD fea without probiotics (M). The moisture and crude ash content of Y treated pork was higher than those for J and M brands, but the crude fat content of J pork was significantly lower (p<0.05) than Y and M brands. The moisture and crude fat contents of Y gilts were higher (p<0.05) than those of barrows. The pH values of Y gilts were higher (p<0.05) than those of gilts of J and M brands. The Land W values of Y pork were lower (p<0.05) than with J and M brands. The springiness value of J pork was significantly higher (p<0.05) than Y and M porks. The sensory scores of Y pork were higher than pork of J and M. The juiciness of gilts of M brands was higher (p<0.05) than for barrows. With regard to the fatty acid profiles among the pork loins, linoleic and arachidonic acid contents of Y pork were higher than with J and M, while the palmitic, pamitoleic, stearic, and oleic acid contents were lower. The saturated fatty acid (SFA) content of Y pork was lower than that for J and M ones, while the unsaturated fatty acids (USFA), essential fatty acids (FFA), USF/ASF A ratio, FFA/SFA ratio, and EFA/USFA ratio were higher. The stearic acid content of M barrows was higher (p<0.05) than that for gilts.

  • PDF

Quality Properties of Brand Pork (브랜드화된 돈육의 품질 특성)

  • Jin, Sang-Keun;Kim, Il-Suk;Lee, Jae-Ryong;Shin, Teak-Soon
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.470-479
    • /
    • 2008
  • This study was carried out to investigate the quality characteristics of brands pork: a crossbred between Korean native and wild pigs (Y), a commercial LYD breed fed with probiotics (J), and a commercial LYD fea without probiotics (M). The moisture and crude ash content of Y treated pork was higher than those for J and M brands, but the crude fat content of J pork was significantly lower (p<0.05) than Y and M brands. The moisture and crude fat contents of Y gilts were higher (p<0.05) than those of barrows. The pH values of Y gilts were higher (p<0.05) than those of gilts of J and M brands. The L and W values of Y pork were lower (p<0.05) than with J and M brands. The springiness value of J pork was significantly higher (p<0.05) than Y and M porks. The sensory scores of Y pork were higher than pork of J and M. The juiciness of gilts of M brands was higher (p<0.05) than for barrows. With regard to the fatty acid profiles among the pork loins, linoleic and arachidonic acid contents of Y pork were higher than with J and M, while the palmitic, pamitoleic, stearic, and oleic acid contents were lower. The saturated fatty acid (SFA) content of Y pork was lower than that for J and M ones, while the unsaturated fatty acids (USFA), essential fatty acids (FFA), USFA/SFA ratio, FFA/SFA ratio, and EFA/USFA ratio were higher. The stearic acid content of M barrows was higher (p<0.05) than that for gilts.