DOI QR코드

DOI QR Code

Impact of Prebiotic on Viability of Lactiplantibacillus plantarum D-2 by Encapsulation through Spray Drying and Its Commercialization Potential

  • Changheon Lee (Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University) ;
  • Daeung Yu (Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University)
  • Received : 2024.01.18
  • Accepted : 2024.03.18
  • Published : 2024.05.28

Abstract

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96℃). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25℃. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.

Keywords

Acknowledgement

This research is funded by the Financial Program for Self-Directed Research Capacity in 2022.

References

  1. Jankovic I, Sybesma W, Phothirath P, Ananta E, Mercenier A. 2010. Application of probiotics in food products-challenges and new approaches. Curr. Opin. Biotechnol. 21: 175-181. https://doi.org/10.1016/j.copbio.2010.03.009
  2. Gu RX, Yang ZQ, Li ZH, Chen SL, Luo ZL. 2008. Probiotic properties of lactic acid bacteria isolated from stool samples of longevous people in regions of Hotan, Xinjiang and Bama, Guangxi, China. Anaerobe 14: 313-317. https://doi.org/10.1016/j.anaerobe.2008.06.001
  3. Bustamante M, Laurie-Martinez L, Vergara D, Campos-Vega R, Rubilar M, Shene C. 2020. Effect of three polysaccharides (inulin, and mucilage from chia and flax seeds) on the survival of probiotic bacteria encapsulated by spray drying. Appl. Sci. 10: 4623.
  4. Oyetayo V. 2004. Phenotypic characterisation and assessment of the inhibitory potential of Lactobacillus isolates from different sources. Afr. J. Biotechnol. 3: 355-357. https://doi.org/10.5897/AJB2004.000-2067
  5. Ryu DG, Park SK, Kang MG, Jeong MC, Jeong HJ, Kang DM, et al. 2020. Antioxidant and cholesterol-lowering effects of lactic acid bacteria isolated from kelp Saccharina japonica Kimchi. Korean J. Fish. Aquat. Sci. 53: 351-360.
  6. Apolinario AC, de Lima Damasceno BPG, de Macedo Beltrao NE, Pessoa A, Converti A, da Silva JA. 2014. Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym. 101: 368-378. https://doi.org/10.1016/j.carbpol.2013.09.081
  7. Canbulat Z, Ozcan T. 2015. Effects of short-chain and long-chain inulin on the quality of probiotic yogurt containing Lactobacillus rhamnosus. J. Food Process. Preserv. 39: 1251-1260. https://doi.org/10.1111/jfpp.12343
  8. Biedrzycka E, Bielecka M. 2004. Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci. Technol. 15: 170-175. https://doi.org/10.1016/j.tifs.2003.09.014
  9. Coudray C, Tressol JC, Gueux E, Rayssiguier Y. 2003. Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur. J. Nutr. 42: 91-98. https://doi.org/10.1007/s00394-003-0390-x
  10. Desmond C, Ross R, O'callaghan E, Fitzgerald G, Stanton C. 2002. Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J. Appl. Microbiol. 93: 1003-1011. https://doi.org/10.1046/j.1365-2672.2002.01782.x
  11. Rajam R, Anandharamakrishnan C. 2015. Spray freeze drying method for microencapsulation of Lactobacillus plantarum. J. Food Eng. 166: 95-103. https://doi.org/10.1016/j.jfoodeng.2015.05.029
  12. Chavez B, Ledeboer A. 2007. Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry. Technol. 25: 1193-1201. https://doi.org/10.1080/07373930701438576
  13. Fritzen-Freire CB, Prudencio ES, Amboni RD, Pinto SS, Negrao-Murakami AN, Murakami FS. 2012. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res. Int. 45: 306-312. https://doi.org/10.1016/j.foodres.2011.09.020
  14. Corcoran B, Ross R, Fitzgerald G, Stanton C. 2004. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 96: 1024-1039. https://doi.org/10.1111/j.1365-2672.2004.02219.x
  15. Arepally D, Goswami TK. 2019. Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT 99: 583-593. https://doi.org/10.1016/j.lwt.2018.10.022
  16. Behboudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I. 2013. Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Dry. Technol. 31: 1274-1283. https://doi.org/10.1080/07373937.2013.788509
  17. Zhu Z, Luan C, Zhang H, Zhang L, Hao Y. 2016. Effects of spray drying on Lactobacillus plantarum BM-1 viability, resistance to simulated gastrointestinal digestion, and storage stability. Dry. Technol. 34: 177-184. https://doi.org/10.1080/07373937.2015.1021009
  18. Blott SJ, Pye K. 2012. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59: 2071-2096. https://doi.org/10.1111/j.1365-3091.2012.01335.x
  19. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, et al. 2014. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 5: 1113-1124. https://doi.org/10.1039/C3FO60702J
  20. Reddy RS, Ramachandra C, Hiregoudar S, Nidoni U, Ram J, Kammar M. 2014. Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying. Small Rumin. Res. 119: 130-137. https://doi.org/10.1016/j.smallrumres.2014.01.013
  21. Ahmed M, Akter MS, Eun JB. 2010. Peeling, drying temperatures, and sulphite-treatment affect physicochemical properties and nutritional quality of sweet potato flour. Food Chem. 121: 112-118. https://doi.org/10.1016/j.foodchem.2009.12.015
  22. Kha TC, Nguyen MH, Roach PD, Stathopoulos CE. 2014. Microencapsulation of gac oil by spray drying: optimization of wall material concentration and oil load using response surface methodology. Dry. Technol. 32: 385-397. https://doi.org/10.1080/07373937.2013.829854
  23. Correa-Filho LC, Lourenco MM, Moldao-Martins M, Alves VD. 2019. Microencapsulation of β-carotene by spray drying: effect of wall material concentration and drying inlet temperature. Int. J. Food Sci. 2019: 8914852.
  24. Lian WC, Hsiao HC, Chou CC. 2002. Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 74: 79-86. https://doi.org/10.1016/S0168-1605(01)00733-4
  25. Kim SM, Aung T, Kim MJ. 2022. Optimization of germination conditions to enhance the antioxidant activity in chickpea (Cicer arietimum L.) using response surface methodology. Korean J. Food Preserv. 29: 632-644. https://doi.org/10.11002/kjfp.2022.29.4.632
  26. Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, et al. 2008. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe 14: 280-286. https://doi.org/10.1016/j.anaerobe.2008.07.002
  27. Hernandez-Hernandez O, Muthaiyan A, Moreno FJ, Montilla A, Sanz ML, Ricke S. 2012. Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiol. 30: 355-361. https://doi.org/10.1016/j.fm.2011.12.022
  28. Premi M, Sharma H. 2017. Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. Int. J. Biol. Macromol. 105: 1232-1240. https://doi.org/10.1016/j.ijbiomac.2017.07.160
  29. Yoha K, Moses J, Anandharamakrishnan C. 2020. Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. J. Food Eng. 283: 110033.
  30. Sarkar S. 2018. Probiotic therapy for prevention of necrotizing enterocolitis in preterm infants-a review. J. Nutri. Health Food Sci. 6: 1-9. https://doi.org/10.15226/jnhfs.2018.001137
  31. Pinto SS, Verruck S, Vieira CR, Prudencio ES, Amante ER, Amboni RD. 2015. Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments. LWT64: 1004-1009. https://doi.org/10.1016/j.lwt.2015.07.020
  32. Shrivastava A, Tripathi AD, Paul V, Rai DC. 2021. Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. LWT 151: 112091.