• Title/Summary/Keyword: Commercial catalyst

Search Result 290, Processing Time 0.027 seconds

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt (40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.388-400
    • /
    • 2021
  • Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.

Studies on the Emission control of methanol engine exhaust with modified 3-way catalyst at cold start condition (변형된 삼원촉매에 의한 저온시동조건에서의 메탄올엔진 배가스 정화효과에 관한 연구)

  • 홍종성;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.160-167
    • /
    • 1993
  • As the major methanol fueled vehicle exhaust components, formaldehyde & methanol conversion over the existing commercial 3-way catalyst was examined in a labolatory tains different Ag loadings on commercial 3-way catalyst, and german commercial catalysts for methanol engine exhaust manufactured by a commercial manufacturer. Silver catalysts were prepared by the wet impregnation of silver nitrate solution on commercial 3-way catalyst. These catalysts were characterized with BET Surface area and pore size distribution. In general, the formaldehyde(HCHO) conversion of the tested catalysts was similar to that of methanol$(CH_3OH)$. At 100$^\circ$C, which is equivalent to the cold start condition, 5wt% Ag cat. showed the most excellent HCHO and $CH_3OH$ conversion. The order of activity for conversion of HCHO & $CH_3OH$ to carbon dioxide and water vapor was as follows ; 5wt% Ag/3-way cat.>2wt% Ag/3-way cat.>german cat. front(1) > german cat. rear(2) > 10wt% Ag/3-way cat.> commercial 3-wat catalyst. However there was no significant activity difference between those tested catalysts in the hot run condition of 400$^\circ$C. Therefore, it could be concluded that the Ag-modified 3-way catalyst was the most effective and practical catalyst system which could be capable of removal the HCHO and methanol at the special condition of low temperature such as cold start condition.

  • PDF

CO Conversion Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 CO 전환 특성)

  • Ryu, Hojung;Park, Jihye;Lee, Dongho;Park, Jaehyeon;Bae, Dalhee
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Reactivity of commercial WGS catalyst and four new catalysts(RMC-3, PC-73, PC-67SU, PC-59) manufactured with various compositions by Korea Electric Power Research Institute(KEPCO RI) were compared to select suitable WGS catalyst for SEWGS system. Steam/CO ratio, gas velocity, flow rates of syngas, and temperature were considered as operating variables. As a result, commercial catalyst showed the highest CO conversion and RMC-3 catalyst showed also high CO conversion. Therefore, commercial and RMC-3 catalysts were selected as applicable catalysts. However, PC-73 catalyst showed low CO conversion at low temperature($200^{\circ}C$) but showed good reactivity at high temperature($225{\sim}250^{\circ}C$), and therefore, PC-73 catalyst was selected as applicable catalyst for high temperature operation. Continuous operations up to 24 hours for those three catalysts(commercial, RMC-3, PC-73) were conducted to check reactivity decay of catalysts. All three catalysts maintained their original reactivity.

Characteristics of Residual Ozone Decomposition with Commercial Ozone Decomposition Catalyst (ODC) and Photo catalyst (상업용 오존촉매와 광촉매를 이용한 오존제거특성)

  • Byeon, Jeong-Hoon;Park, Jae-Hong;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1255-1260
    • /
    • 2004
  • Decomposition of ozone at room temperature was investigated comparatively with commercial monolithic ozone decomposition catalyst (ODC, $MnO_2$) and monolithic photo catalyst ($TiO_2$). The effects of residence time, UV (ultraviolet) light dependence and ozone concentration on the conversion was presented. UV ray was irradiated using BLB (black light blue) lamp ($315{\sim}400$ nm), supplied with a constant intensity in the reactor. The concentration of ozone in the square-shape reactor can be controlled by combining the DBD (dielectric barrier discharge) reactor with an AC high voltage supply system. The catalytic performance, in presence of UV irradiation did not show significant changes for $MnO_2$ catalyst. $TiO_2$ catalyst was the different case, which showed higher decomposition activity in presence of UV irradiation. Deactivation of catalyst detected by real-time ozone monitor for 120 hours with a constant inlet ozone concentration.

  • PDF

A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate (폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구)

  • Na, Woo-jin;Cha, Eunji;Kang, Dae-hwan;Go, Young-ju;Cho, Ye-ji;Choi, Eun-young;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.723-732
    • /
    • 2020
  • The spent RHDS (Residue HydroDeSulfurization) catalyst is deactivated mainly by deposition of various contaminants such as coke, sulfur and vanadium on the surface of catalyst. To eliminate those contaminants, the following remanufacturing process was conducted. The first, heavy oil on the surface of the spent RHDS catalyst was removed by kerosene and dehydrated. The second, the high temperature incineration was carried out to eliminate coke and sulfur components deposited on the surface of spent RHDS catalyst. The third, the excessive quantity of Vanadium deposited on the surface of catalyst was removed by leaching process as follows: ultrasonic agitation was carried out at 50℃, for 10 seconds with 0.5% and 1% oxalic acid solution. The purpose of this process is to find out regenerated RHDS catalyst can be used as SCR catalyst for NOx reduction by controlling the vanadium residual content of the regenerated RHDS catalyst through leaching process. The composition of regenerated RHDS catalyst was analyzed by XRF and the NOx reduction efficiency was also measured by continuous catalytic fixed bed reactor. As the result, regenerated catalyst, with 0.5% oxalic acid, ultrasonic agitation in 10 seconds, showed the most stable NOx reduction efficiency. Also, in comparison with commercial SCR catalyst, the NOx reduction performance of regenerated catalyst was similar to that of commercial SCR catalyst at the temperature 375℃ and higher whereas was lower than commercial SCR catalyst at the temperature range between 200~250℃. Therefore, it was confirmed that the regenerated catalyst as powder form wash coated on the surface of metal corrugated substrate can be used for commercial SCR catalyst.

Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane (저농도 메탄 연소에서 상용 금속촉매의 활성)

  • Lee Kyong-Hwan;Park Jae-Hyun;Song Kwang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst (폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율)

  • Na, Woo-jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.876-885
    • /
    • 2018
  • Utilization of spent RHDM(Residue Hydrodemetallation) catalyst as de-NOx SCR(Selective Catalytic Reduction) catalyst was studied by conducting by heptane cleaning and high-temperature roasting for removal of deposited carbon and sulfur. Followed by oxalic acid leaching was carried out for controlling excess vanadium deposited on spent RHDM catalyst in search of appropriate vanadium loadings for the best SCR performance and the leaching conditions are 5~15wt% concentration of oxalic acid and 5min leaching time at $50^{\circ}C$ with the ultra-sonic agitator. De-NOx activities of prepared and commercial SCR catalyst were measured by the atmospheric SCR catalyst performance test unit, their residual content were also carried out by ICP, C&S Analysis and XRF. Acid leaching (AL-10) catalyst showed the highest de-NOx efficiency of all prepared catalysts and the de-NOx efficiency over wash coated catalyst(WC-AL-10) was equivalent to that of commercial SCR catalyst. Therefore the possibility of using as SCR catalyst for each application by adjusting treatment conditions of spent RHDM catalyst was found and further research will be needed in detail for the its commercialization.

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Noble metal catalysts for Water Gas Shift reaction (귀금속계열 WGS 촉매 연구)

  • Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2228-2231
    • /
    • 2007
  • Water gas shift reactor in fuel processing is an important part that converts carbon monoxide into hydrogen. Fuel processing system for PEMFC usually has two stages of WGS reactors, which are high temperature and low temperature shifter. In this study we prepared noble metal catalysts and compared their performances with that of a commercial iron chromium oxide catalyst. Noble metal catalysts and the commercial catalyst showed quite different temperature dependence of carbon monoxide conversion. The conversion of carbon monoxide at the commercial catalyst was very low at medium temperature(${\sim}300^{\circ}C$) and increased rapidly as temperature increased while the conversion at noble metal catalysts was high in the medium temperature range and decreased as temperature increased, which is thermodynamically expected. Their characteristics agreed well with the literature published, and we are accomplishing further study for improvement of the noble metal catalysts.

  • PDF