• Title/Summary/Keyword: Commercial Fire

Search Result 176, Processing Time 0.028 seconds

Effect of Platform Screen Door on fire in the subway station (스크린도어가 설치된 지하철 승강장의 화재유동 전산 수치 모사를 이용한 스크린도어의 화재 영향 연구)

  • Jang, Yong-Jun;Jung, Woo-Sung;Park, Won-Hee;Kim, Hag-Beom
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1337-1345
    • /
    • 2007
  • The present study is a basic investigation for systematically proceeding disaster prevention studying the effect of platform screen door in case of fire at the subway station. In the paper, the characteristics of screen door were surveyed and described. The fully closed platform screen door and the island type of subway station were employed for simulation-study. Numerical simulations of fire driven flow at the subway station with platform screen door were performed with commercial fire CFD code. For analyzing of the effect of platform screen door, the fire simulations with and without the platform screen door were compared. For the fire location, the one is located on the platform and the other case on the railway. The Ultrafast model was taken as fire growth scenario. The maximum heat release rate was 10MW. The propagated time of the heat and smoke to stairs was within 4 minute when the fire is located on the platform. However the heat and smoke propagation was block off by screen door when the fire is located on the railway.

  • PDF

A Study on the Treatment of Suitable Flame Retardant to the Fibers for Welding Blanket Development (용접 불티 차단막 개발을 위한 섬유류의 적정 방염처리 방안 연구)

  • 이근원;김관응;이두형
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.48-55
    • /
    • 2002
  • This study presents a treatment of suitable flame retardant through evaluating fire performance after treating flame retardant of fibers for development of welding blanket. The experimental samples used were commercial fibers and we are treated fibers with the flame retardant liquid and the flame retardant paint. The fire performance of the sample was carried out according to the Korea and Japan Standard. As the results of the fire performance experiment, the treated fiber in samples had enough in the performance of flame and fire retardant and the grade of their was from grade A to grade C according to flame and fire retardant standard. The lower oxygen index indicated that all treated samples with the resist are satisfied with international standard. We con-sider that the welding blanket treated with grade A, B and C performance prevents fire spread regardless of the height of work stairs in the case of installation horizontally. Also, it is considered that the welding blanket treated with grade C performance prevents fire spread regardless of the height of work stairs in the case of installation vertically.

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

APPLICATION OF CFD TECHNIQUE TO PERFORMANCE PREDICTION OF SPRAY CHARACTERISTICS OF WATER-MIST FIRE SUPPRESSION NOZZLES (미분무수 소화 노즐의 분무 특성 예측을 위한 CFD기법의 적용)

  • Chung, H.T.;Lee, C.H.;Cho, B.I.;Han, Y.S.;Ock, Y.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.56-61
    • /
    • 2006
  • Numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied for analyzing both the internal and external flow of the spray nozzles. Computations were made for the full cone nozzle in the operation range of the low pressure and high flow-rate. To validate the present computational procedure, numerical results are compared with measurements in terms of K-factor, SMD, axial spray velocity and spray angles. Numerical results suggested that the present numerical model can be used as an adequate tool for a design purpose of mist-spray nozzles.

Evaluation of Heat Transfer Characteristics due to a Fire of a Train Standing at Under-Ground Station (지하역사에 정차한 열차의 화재에 따른 역사 내 열유동 특성 평가)

  • Lee, Kwang-Seob;Shin, Kwang-Bok;Kim, Dong-Hyun;Lee, Eun-Kyu;Kim, Jae-Hwang;Ryu, Bong-Jo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1619-1625
    • /
    • 2007
  • This paper deals with the heat transfer characteristics due to a fire of train standing at under-ground station. In order to analyze the fluid characteristics at under-ground station, the governing equation was assumed to be steady-state, incompressible and turbulent fluid model. The commercial Fluent ver. 6.0 was used to solve the above numerical problem. Through the numerical analysis, fluid path-line, temperature distribution and $CO_2$ density distribution are demonstrated for three kinds of cases. As a conclusion of the study, a scenario for operation of ventilation fan in a fire is proposed.

  • PDF

Application of CFD Technique to Performance Prediction of Spray Characteristics of Fire Suppression Nozzles (소화 노즐의 분무 특성 예측을 위한 CFD 기법의 적용)

  • Chung, H.;Lee, C.;Jung, H.;Choi, B.;Han, Y.;Ohck, Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.233-239
    • /
    • 2005
  • In the present study, numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied in both the internal and external flow region of the spray nozzles. Applications were done to the full cone nozzle for the operation range of the low pressure and high flow-rate. Numerical validation was proved by the comparison of the experimental data. Parametric study of the key design factors was tried to improve the performance.

  • PDF

A Study on Combustion Characteristics of Methane-air Homogeneous Mixture in a Constant Volume combustion Chamber by FIRE Code (FIRE Code를 사용한 정적연소기의 메탄-공기 균질 혼합기 연소특성 연구)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.28-36
    • /
    • 2006
  • A constant volume combustion chamber was used to investigate the combustion characteristics. of homogeneous charge of methane-air mixture under various initial pressure, equivalence ratio and ignition times. The constant volume combustion chamber(CVCC) mostly has been studied by the experiments of visualization until now. So it is needed the numerical analysis of fluid and combustion characteristics in chamber by the more detail simulation. In this paper, the numerical analysis is tried to approach basically the homogeneous charge combustion phenomena under the various conditions, and the combustion phenomena in chamber is numerically analyzed by the commercial FIRE code. As a results, the combustion phenomena which were mean temperature, OH radical and reaction rate in chamber were investigated and it showed that the smallest flame growth occurs for the lean state and the increase of initial charged pressure condition due to the reduced OH radical.

  • PDF

Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 수치연구)

  • Jang, Won-Cheol;Kim, Dong-Woon;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2130-2138
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading characteristics in railway tunnels with the rescue stations. Experiments were carried out for n-heptane pool fires with a square length 4 cm at different fire locations, and the heat release rates (HRR) were obtained by the measurement of burning rates. In addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

  • PDF

The Analysis of Ventilation of Road Tunnel in Fire (도로터널 화재시의 환기분석)

  • Kom, Sung-Joon;Ryu, Jin-Woong
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.9-13
    • /
    • 2003
  • Numerical experiments are done by a commercial code, PHOENICS to evaluate the backlayer phenomenon of smoke in case of the road tunnel fire. The independent and dependent variables are ventilation air velocity and the length of backlayer of smoke respectively. Hybrid scheme and ${\kappa}-{\varepsilon}$ turbulence model are adopted in the simulation process and mass residual is used as a convergence criterion. The experimental results say that the length of backlayer is reduced with the increase of ventilating air velocity and that there is a critical air velocity which prevents from the onset of backlayering phenomena. One finds that there is a fresh air region near the bottom of tunnel which could make the passenger escape safely from the polluted region by smoke. These phenomena come from the vertical stratification of the smoke air mixture in the tunnel.

  • PDF

A comparative Study for dispersion model in evacuation plan by using MAS-based evacuation simulation (MAS 기반 피난시뮬레이션을 이용한 분산대피 비교 연구)

  • Jang, Jae-Soon;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Smoke is one of the most critical factor when escaping from the fire since it reduces visibility and interrupts finding emergency exit lights. Therefore, it is recommended that an evacuation simulation program should incorporate the smoke factor. In addition, it is suggested that the program should include not only the unilateral damage by the smoke but also the detour evacuation by risk communication. In this study, MAS (Multi Agent System)-based simulation program which incorporates the reduced walking speed by smoke and adopts the dispersion evacuation logic during escaping from the fire. To make comparison, a commercial evacuation program, Pathfinder was used. It was found that the simulation results of MAS (Multi Agent System)-based program is better than Pathfinder in terms of safe evacuation. It means that evacuation simulation need a additional evaluation categories that include not only quick evacuation time but also safe evacuee number.