• Title/Summary/Keyword: Commercial $Fe_2O_3$ catalyst

Search Result 12, Processing Time 0.021 seconds

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

A Study on the Deactivation of Commercial DeNOx Catalyst in Fired Power Plant (화력발전소 상용 탈질 촉매의 활성저하 원인에 관한 연구)

  • Park, Kwang Hee;Lee, Jun Yub;Hong, Sung Ho;Choi, Sang Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.376-381
    • /
    • 2008
  • The deactivation of $V/TiO_2$ catalyst used in SCR (Selective Catalytic Reduction) using ammonia as a reductant to remove the nitrogen oxides (NOx) in the exhaust gas from fired power plant has been studied. The activity and surface area of the catalyst (Used-cat) which was exposed to the exhaust gas for long period have considerably decreased. The characterizations of these SCR catalysts were performed by XRD, FT-IR, FE-SEM, and IC/ICP. The crystal structure of $TiO_2$ both fresh and used catalyst has not been changed. However, $(NH_4)HSO_4$ deposited on the used catalyst surface verified from FT-IR, FE-SEM, and IC/ICP analysis. Moreover, the durability of $SO_2$ was increased by diminishing sulfate ($SO_4^{-2}$)f form.

Improved high-performance La0.7Sr0.3MxFe1-xO3 (M = Cu, Cr, Ni) perovskite catalysts for ortho-para hydrogen spin conversion

  • Choi, Jeong-Gil;Choi, Euiji;Kweon, Soon-Cheol;Oh, In-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The improved high-performance Fe-based perovskite-type oxides ($La_{0.7}Sr_{0.3}M_xFe_{1-x}O_3$, M = Cu, Cr, Ni) were synthesized by a citrate method and characterized by SEM, EDS, XRD and NMR spectroscopy analyses. The characterization analyses revealed that the stoichiometric amounts of lattice oxygen were existed in all of perovskite samples except for a nickel-doped perovskite. Fe-based perovskites exhibited a surprising result for ortho-para $H_2$ spin conversion reaction, indicating two orders of magnitude higher conversions and conversion rates than commercial $Fe_2O_3$. It was considered that this conversion difference might be attributed to the presence of oxygen vacancies in Fe-based perovskites prepared in this study.

Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications (Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용)

  • Moon, Dong Ju;Ryu, Jong-Woo;Yoo, Kye Sang;Lee, Byung Gwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

Hydrogen Production by Auto-thermal Reforming of Ethanol over $M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) Catalysts ($M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) 촉매 상에서 에탄올 자열개질반응에 의한 수소 제조)

  • Youn, Min-Hye;Seo, Jeong-Gil;Cho, Kyung-Min;Park, Sun-Young;Kim, Pil;Song, In-Kyu
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2007
  • [ $M/Al_2O_3$ ] (M = Mn, Fe, Co, Ni, Cu) catalysts supported on commercial alumina ($Al_2O_3$) were prepared by an impregnation method, and were applied to the hydrogen production by auto-thermal reforming of ethanol. It was revealed that each catalyst retained its own metallic phase and product distribution strongly depended on the identity of active metal. Among the catalysts prepared, $Ni/Al_2O_3$ and $Co/Al_2O_3$ showed the best catalytic performance in the auto-thermal reforming of ethanol. However, the reaction mechanisms over these two catalysts were different. Ni/Al_2O_3 catalyst showed 100% ethanol conversion at $500^{\circ}C$, but it exhibited a rapid decrease in hydrogen selectivity. Although $Co/Al_2O_3$ catalyst showed an excellent performance in hydrogen selectivity, on the other hand, no significant improvement in hydrogen yield was observed due to the low ethanol conversion over the catalyst.

  • PDF

A Study on Catalysts for Simultaneous Removal of 1,2-Dichlorobenzene and NOx (1,2-Dichlorobenzene 및 질소산화물 동시제거를 위한 촉매연구)

  • Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.522-526
    • /
    • 2009
  • The catalytic oxidation of 1,2-dichloribenzene (1,2-DCB) and simultaneous catalytic reduction of nitrogen oxides over the single catalyst has been investigated over various metals (Ru, Mn, Co and Fe) supported on $Al_2O_3$ and $CeO_{2}$. The activity of the different catalysts for catalytic oxidation of 1,2-dichloribenzene depended on the used metal, Ru/Co/$Al_2O_3$, Mn-Fe/CeO2 and Cr/$Al_2O_3$ (commercial catalysts) being the most actives ones. In the catalytic oxidation of chlorobenzene (CB), Ru/Co/$Al_2O_3$ is better than Pt-Pd/$Al_2O_3$, which is the well-known catalyst good for VOC oxidation. Furthermore, it has a good durability on the deactivation by $Cl_2$ and sulfur. For nitrogen oxides (NOx) removal, NOx conversion was 70% at $260^{\circ}C$.

Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride (고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구)

  • Park, Yong Beom;Choi, Jae Hyung;Lim, Han-Kwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • Various metal chlorides and acid catalysts in ionic liquid solvent were investigated to directly convert cellulose into 5-hydroxymethylfurfural (5-HMF). Metal chlorides containing Sn(II), Zn(II), Al(III), Fe(III), Cu(II), and Cr(III) were used and acidic ionic liquid immobilized on silica gel as an acid catalyst and commercial acid catalysts (sulfuric acid, chloric acid, Amberlyst-15,DOWEX50x8) were used for comparison studies. The acid strength and amount of acid catalysts were probed with Hammett indicator. The selectivity and yield of 5-HMF were determined with reaction temperature, reaction time and catalyst ratio. A catalyst containing $CrCl_3-6H_2O$ and $SiO_2-[ASBI]HSO_4$ showed the highest selectivity and it was found that this catalyst had higher activity than commercial solid acid catalysts such as Amberlyst-15 and DOWEX50x8. The selectivity of 5-HMF appeared to be mainly dependent on the acid strength and catalyst ratio, it was found that levulinic acid was produced from 5-HMF by rehydration.

Sulfuric Acid Decomposition on CuFeAlOx Catalysts (CuFeAlOx 촉매상에서의 황산분해 반응)

  • Jeon, Dong-Kun;Lee, Kwan-Young;Gong, Gyeong-Taek;Yoo, Kye-Sang;Kim, Hong-Gon;Jung, Kwang-Deog;Lee, Byung-Gwon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • CuFeOx/$Al_2O_3$ catalysts are developed for the use in sulfuric acid decomposition which is a subcycle in thermochemical iodine-sulfur cycle to split water into hydrogen and oxygen. Both Cu and Fe components are co-precipitated with Al component to enhance distribution of active components. Developed catalysts are improved in the capability of sulfuric acid decomposition and endurance under highly acidic environment compared to commercial catalysts such as Pt/$Al_2O_3$ and $2CuO{\cdot}Cr_2O_3$. Developed CuFeAlOx catalysts exhibited higher sulfuric acid decomposition ability than $2CuO{\cdot}Cr_2O_3$ and longer endurance trends than Pt/$Al_2O_3$ maintaining comparable performance, respectively.

Synthesis of Magnetic Sonophotocatalyst and its Enhanced Biodegradability of Organophosphate Pesticide

  • Lirong, Meng;Jianjun, Shi;Ming, Zhao;Jie, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3521-3526
    • /
    • 2014
  • A magnetic sonophotocatalyst $Fe_3O_4@SiO_2@TiO_2$ is synthesized for the enhanced biodegradability of organophosphate pesticide. The as-prepared catalysts were characterized using different techniques, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). The radial sonophotocatalytic activity of $Fe_3O_4@SiO_2@TiO_2$ nanocomposite was investigated, in which commercial dichlorvos (DDVP) was chosen as an object. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and enhancement of biodegradability. The effect of different factors, such as reaction time, pH, the added amount of catalyst on $COD_{Cr}$ removal efficiency were investigated. The average $COD_{Cr}$ removal efficiency reached 63.13% after 240 min in 12 L sonophotocatalytic reactor (catalyst $0.2gL^{-1}$, pH 7.3). The synergistic effect occurs in the combined sonolysis and photocatalysis which is proved by the significant improvement in $COD_{Cr}$ removal efficiency compared with that of solo photocatalysis. Under this experimental condition, the $BOD_5/COD_{Cr}$ ratio rose from 0.131 to 0.411, showing a remarkable improvement in biodegradability. These results showed that sonophotocatalysis may be applied as pre-treatment of pesticide wastewater, and then for biological treatment. The synthesized magnetic nanocomposite had good photocatalytic performance and stability, as when it was used for the fifth time, the $COD_{Cr}$ removal efficiency was still about 62.38%.

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.