Sulfuric Acid Decomposition on CuFeAlOx Catalysts

CuFeAlOx 촉매상에서의 황산분해 반응

  • Jeon, Dong-Kun (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Kwan-Young (Department of Chemical and Biological Engineering, Korea University) ;
  • Gong, Gyeong-Taek (Clean Energy Research Center, Energy & Environment Research Division) ;
  • Yoo, Kye-Sang (Clean Energy Research Center, Energy & Environment Research Division) ;
  • Kim, Hong-Gon (Clean Energy Research Center, Energy & Environment Research Division) ;
  • Jung, Kwang-Deog (Clean Energy Research Center, Energy & Environment Research Division) ;
  • Lee, Byung-Gwon (Clean Energy Research Center, Energy & Environment Research Division) ;
  • Kim, Chang-Soo (Clean Energy Research Center, Energy & Environment Research Division)
  • 전동근 (고려대학교 화공생명공학과) ;
  • 이관영 (고려대학교 화공생명공학과) ;
  • 공경택 (한국과학기술연구원 에너지.환경 연구본부 청정에너지연구센터) ;
  • 유계상 (한국과학기술연구원 에너지.환경 연구본부 청정에너지연구센터) ;
  • 김홍곤 (한국과학기술연구원 에너지.환경 연구본부 청정에너지연구센터) ;
  • 정광덕 (한국과학기술연구원 에너지.환경 연구본부 청정에너지연구센터) ;
  • 이병권 (한국과학기술연구원 에너지.환경 연구본부 청정에너지연구센터) ;
  • 김창수 (한국과학기술연구원 에너지.환경 연구본부 청정에너지연구센터)
  • Published : 2008.02.29

Abstract

CuFeOx/$Al_2O_3$ catalysts are developed for the use in sulfuric acid decomposition which is a subcycle in thermochemical iodine-sulfur cycle to split water into hydrogen and oxygen. Both Cu and Fe components are co-precipitated with Al component to enhance distribution of active components. Developed catalysts are improved in the capability of sulfuric acid decomposition and endurance under highly acidic environment compared to commercial catalysts such as Pt/$Al_2O_3$ and $2CuO{\cdot}Cr_2O_3$. Developed CuFeAlOx catalysts exhibited higher sulfuric acid decomposition ability than $2CuO{\cdot}Cr_2O_3$ and longer endurance trends than Pt/$Al_2O_3$ maintaining comparable performance, respectively.

Keywords

References

  1. C. E. Bamberger, 'Hydorgen Production from Water by Thermochemical Cycles; a 1977 update', Cryogenics, March 1978, pp. 170-183
  2. 정광덕, '열화학적싸이클을 이용한 수소제조', 공업화학 전망, 제 9권 4호, 2006, pp. 15-22
  3. J. H. Norman, K. J. Mysels, R. Sharp, and D. Williamson, 'Studies of the Sulfur-Iodine Thermochemical Water-Splitting Cycle', Int. J. Hydrogen Energy, Vol. 7, No. 7, 1982, pp. 545-556 https://doi.org/10.1016/0360-3199(82)90035-0
  4. 박정은, 김정민, 강경수, 김창희, 김영호, 박주식, 배기광, '백금담지 활성탄소 촉매의 요오드화수소 분해 특성 연구,' 한국수소 및 신에너지학회 논문집, 제 17권 3호, 2006, pp. 301-308
  5. L. E. Brecher, and C. K. Wu, US pat. No. 3, 1975, p. 888, p. 750
  6. J. H. Norman, K. J. Mysels, R. Sharp, and D. Williamson, 'Studies of the Sulfur-Iodine Thermochemical Water-Splitting Cycle,' Int. J. Hydrogen Energy, Vol. 7, No. 7, 1982, pp. 546-556
  7. H. Ishikawa, E. Ishiii, I. Uehara, and M. Nakane, 'Catalyzed Thermal Decomposition of $H_{2}SO_{4}$ and Production of HBr by the Reaction of $SO_{2}$ with $Br_{2}$ and $H_{2}O$,' Int. J. Hydrogen Energy, Vol. 7, No. 3, 1982, pp. 237-246 https://doi.org/10.1016/0360-3199(82)90087-8
  8. H. Tagawa and T. Endo, 'Catalytic Decomposition of Sulfuric Acid using Metal Oxides as the Oxygen Generating Reaction in Thermochemical Water Splitting Process,' Int. J. Hydrogen Energy, Vol. 14, No. 1, 1989, pp. 11-17 https://doi.org/10.1016/0360-3199(89)90151-1
  9. T. -H. Kim, G. -T. Gong, B. G. Lee, K. -Y. Lee, H. -Y. Jeon, C. -H. Chin, H. Kim, K. -D. Jung, 'Catalytic decomposition of sulfur trioxide on the binary metal oxide catalysts of Fe/Al and Fe/Ti,' Appl. Catal. A, Vol. 305, 2006, pp. 39-45 https://doi.org/10.1016/j.apcata.2006.02.052
  10. K. -D. Jung, T. -H. Kim, K. -T. Gong, H. -H. Jeon, C. -H. Chin, H. Kim, '$SO_{3}$ Decomposition on Alumina and Titania Supported Catalysts in IS Cycle to Produce Hydrogen', Proceedings of ICAPP '05, Seoul, May 2005, pp. 15-19
  11. 정광덕, 김홍곤, 이병권, 공경택, 김태호, '구리 페라이트 촉매 및 이를 이용한 삼산화황 분해방법,' Korea Pat. 0685658, 2007
  12. D. C. Harris, Quantitative Chemical Analysis, 7th Ed. Freeman, 2007
  13. F. Gelbard, R. C. Moore, M. E. Vernon, E. J. Parma, D. A. Rivera, H. B. J. Stone, J. C. Andazola, G. E. Naranjo, and P. Pickard, 'Sulfuric Acid Decomposition with Heat and Mass Recovery using a Direct Contact Exchanger,' AIChE Annual Meeting, San Francisco, California, November, 2006