• 제목/요약/키워드: Combustion system

검색결과 2,152건 처리시간 0.031초

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

축열 연소시스템의 최적화 구현을 위한 사용자 전용 해석 프로그램의 개발 (The Development of User Oriented CFD Program for Optimum Design of a Regenerative Combustion Furnace)

  • 강관구;유수열;유홍선;김혁주;노동순
    • 열처리공학회지
    • /
    • 제16권3호
    • /
    • pp.148-158
    • /
    • 2003
  • In this study, a user oriented CFD program for optimum design of a regenerative combustion furnace, REBURN was developed. For user's convenience, user friendly Graphic User Interface was made and the renumbering interface program was developed in order to directly input any generated mesh system from ICEM CFD/FEA. Also an automatic processing system for switching mode was developed. The program was verified through compahng with commercial CFD code about regenerative combustion furnace. Then, numerical simulation of real walking beam furnace used in real industry was performed and the parametric analysis was studied about the arrangement mode. As a results, the uniform temperature was appeared in the cross mode.

다이오드 레이저를 이용한 광흡수 농도 계측 기법 (I) (Species Concentration Measurement Using Diode Laser Absorption Spectroscopy (I))

  • 안재현;김용모;김세원
    • 한국연소학회지
    • /
    • 제9권3호
    • /
    • pp.27-35
    • /
    • 2004
  • Diode laser absorption sensors are advantageous because they may provide fast, sensitive, absolute, and selective measurements of species concentration. These systems are very attractive for practical applications owing to its compactness, resonable cost, robustness, and ease of use. In addition, diode lasers are fiber-optic compatible and thus enable simultaneous measurements of multiple species along a line-of-sight. Recent advances of room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications make it possible to be applied for combustion diagnostics based on diode laser absorption spectroscopy. Therefore, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor systems are now appearing for variety of applications. The objectives of this research are to develope a new gas sensing system and to verify feasibility of this system. Wavelength and power characteristics as a function of injection current and temperature are experimentally found out. Direct absorption spectroscopy has been demonstrated in these experiments and has a bright prospect to this diode laser system.

  • PDF

대향분출염 화염방식에 의한 NOx 생성저감과 연소특성 연구 (III) (A Study on NOx Pollutant Reduction and Combustion Characteristics of Impinging-Jet-Flame combustion Process(III))

  • 최성만;정인석;조경국
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.11-22
    • /
    • 1996
  • It has been generally accepted that NOx formation increases as the maximum temperature or correspondingly the maximum pressure of a combustion system increases. Recently some exceptional experimental results have been reportes that under certain circumstance NOx formation could be reduced while the maximum pressure was increasing by varying the methods of combustion for the same kind of premixed gases. Until now that kind of results have been acquired only for the case of a dual opposed prechamber. But the mechanism has not been clearly understood yet. 3D computer simulation has been tried to clarify the mechanism. Flor this purpose KIVA-Ⅱ has been modified and applied to the model combustion chamber with which the same kind of experimental works have been done by the authors. A good agreement with the experimental results was achieved with the spatial and temporal resolution which is hard th be obtained by the experimental methods. And it was observed that for the dual opposed prechamber case the time for the NOx formation, which is non-equilibrium reaction, is shorter than any other case by an appropriate mixing process in the main combustion chamber. The shorter time reduceed heat loss through the combustion chamber walls and thereby obtaines the higher maximum pressure.

  • PDF

삼단중유연소 버너에서 다단비가 연소현상에 미치는 영향에 대한 수치 연구 (Numerical study on the effects of air staging on combustion in the three air stage heavy oil fired combustion system)

  • 이승수;김혁주;박병식;김종진;최규성
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.235-241
    • /
    • 2004
  • Computations were performed to investigate the effects of air staging on combustion in three stage heavy-oil fired combustion burner. The burner was designed for 3 MW. Different amounts of air are introduced into each 3 three stages by means of each dampers. The goal of the study is to understand combustion phenomena according to each air stage mass ratios through CFD. Air flow rates at three inlets are adjusted by dampers inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. In case of cold flows, only longitudinal velocities arc considered, On the other hand, flow, temperature and NOx generations are taken into account for reactive flows. Simple parametric study was conducted by setting 1'st air stage mass ratio as a parameter. And an optimal operation condition was found. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.

  • PDF

Optimal Threshold 법을 이용한 가솔린 기관의 실린더 내화염 가시화 및 화염 전파 특성에 관한 연구 (In-cylinder Flame Visualization and Flame Propagation Characteristics of SI Engine by using Optimal Threshold Method)

  • 김진수;전문수;윤정의
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.96-104
    • /
    • 2000
  • It is well known that combustion stability under idle and part-load conditions directly affect fuel economy and exhaust emission. In practice, there have been a lot of studies so that a significant improvement in combustion stability has been achieved in this research field. However, applying published results to the development process of mass production engine, there are still many problems which are solved previously. In this study, initial flame behavior and flame propagation characteristic were investigated statistically in order to optimize combustion chamber shapes in the development stage of mass production S.I. engine. To the purpose, the authors applied the flame image capturing system to single cylinder optical engine. The captured flame images were effectively analyzed by using the image processing program which was developed by the authors and adopted new threshold algorithm instead of conventional histogram analysis. In addition, the cylinder pressure was also measured simultaneously to compare evaluated flame results with cylinder pressure data in terms of the combustion characteristics, combustion stability, and cycle-to-cycle combustion variability.

  • PDF

EXPERIMENTAL STUDY ON THE STRATIFIED COMBUSTION CHARACTERISTICS ACCORDING TO COMPRESSION RATIO AND INTAKE TEMPERATURE IN A DIG ENGINE

  • Lee, C.H.;Lee, K.H.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.675-680
    • /
    • 2006
  • In the direct injected gasoline engine, atomized spray is desired to achieve efficient mixture formation needed to good engine performance because the injection process leaves little time for the evaporation of fuels. Therefore, substantial understanding of global spray structure and quantitative characteristics of spray are decisive technology to optimize combustion system of a GDI engine. The combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition(SCCI) engine according to intake temperature and compression ratio was examined. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions, which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The mixture stratification and the fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

Dimethyl-ether (DME) 연료의 분무, 연소 및 배기 특성에 관한 실험 및 수치해석적 연구 (A Study on the Spray, Combustion, and Exhaust Emission Characteristics of Dimethyl-ether (DME) by Experiment and Numerical Analysis)

  • 박수한;김형준;이창식
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.31-37
    • /
    • 2010
  • The aim of this work is to investigate the spray and combustion characteristics of dimethyl-ether (DME) at various injection conditions. The spray characteristics such as spray tip penetration and spray cone angle were experimentally studied from the spray images which obtained from the spray visualization system. Combustion and emissions characteristics were numerically investigated by using KIVA-3V code coupled with Chemkin chemistry solver. From these results, it revealed that DME spray had a shorter spray tip penetration and wider spray cone angle than that of diesel spray due to the low density, low surface tension, and fast evaporation characteristics. At the constant heating value condition, DME fuel showed higher peak combustion pressure and earlier ignition timing, because of high cetane number and superior evaporation characteristics. In addition, the combustion of DME exhausted more $NO_x$ emission and lower HC emission due to the active combustion reaction in the combustion chamber. The result shows that DME had a little soot emission due to its molecular structure characteristics with no direct connection between carbons.

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

석유류 POOL FIRE에 있어서의 열적인 영향(I) (Thermal Effects in the Pool Fire of Fuels(I))

  • 정국삼;강민호;이덕영
    • 한국안전학회지
    • /
    • 제11권1호
    • /
    • pp.75-83
    • /
    • 1996
  • This paper was concerned with pool fire about many used kerosene and diesel oil. In order to know the thermal effects of kerosene and diesel oil, temperature change in the pool fire of these fuels were obtained as a variation of combustion time and the tank's height and diameter by using the data acquisition system, And fuel combustion velocity were derived as a function of the diameter and wall thickness of tanks and combustion time. As a result, when the tank's height was 15㎝, the greater diameter the higher temperature rising regardless of tank's wall thickness and fuels. But, when the tank's height is 30㎝, temperature rising was not higher than 15㎝. Also, temperature rising in the pool fire of kerosene much higher than diesel oil. Kerosene's combustion velocity was about two times faster than diesel oil. And, kerosene's combustion velocity was increased according to the increasing of tank's diameter and combustion time. But, diesel oil's combustion velocity was a little increased or not. Surrounding temperature change of tank with the pool fire was obtained temperature distribution of 0∼35℃ according to the change of tank's diameter and distance from the tank's wall.

  • PDF