• Title/Summary/Keyword: Combustion period

Search Result 252, Processing Time 0.02 seconds

A Study on Comparisons Between Combustion Temperatures Calculated by Two-Region Model and Measured by Two-Color Method in Premixed Constant-Volume Combustion (정적 예혼합기 연소에 있어서 2영역 모델 및 2색법에 의한 연소온도 비교에 관한 연구)

  • S.K.Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.300-310
    • /
    • 1999
  • A constant-volume combustion chamber is developed to measure the burnt gas temperature over the wide ranges of equivalence ratio from 1.5 to 2.7 and pressure from 0.1 to 2.7 and pressure from 0.1 to 6 MPa by two-color method. The combustion temperature is also calculated by the conventional two-region model. The premixed fuel rich propane-oxygen-inert gas mixtures under high pressures are simultaneously ignited by eight spark plugs located on the circumference of combustion chamber with 45 degree intervals. The eight converging flames compress the end gases to high pressures. The transmissiv-ity in the chamber center during the final stage of combustion at the highest pressure is measured by in situ laser extinction method. Comparisons are made with the combustion temperatures between two-color method and two-region model. It is found that the burnt gas temperature mea-sured by two-color method is higher than that calculated by two-region model because of being the negative temperature gradient on the calculation and the temperature distribution of light path-length on the measurement and the burnt gas temperature for the turbulent combustion is higher than that of the laminar combustion under the same conditions because the heat loss for turbulent combustion is lower due to the shorter combustion period.

  • PDF

The Demonstration Test Result of 100% Bio Heavy Oil Combustion at the 75 MWe Oil Fired Power Plant (75 MWe급 중유 발전소 보일러에 대한 바이오중유 100% 전소 실증 연소실험 결과)

  • Baek, Sehyun;Park, Hoyoung;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyunhee;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.28-36
    • /
    • 2014
  • Bio fuel oil combustion experiments were successfully demonstrated at the 75 MWe oil-fired power plant without major equipment retrofit and 100% bio-fuel oil combustion was possible without big problems. The experimental data error correction was conducted and numerical model-based analysis technique was applied for the evaluation of the results. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. The furnace exit gas temperature tends to rise slightly. Environment emissions such as NOx and SOx concentrations showed a tendency to decrease during the bio fuel oil combustion period. On the other hand, boiler efficiency was slightly underestimated.

Combustion Characteristics of Methane-Hydrogen-Air Premixture(II) (메탄-수소-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

Numerical Analysis of Combustion Characteristics during Combustion Mode Change of a Low NOx Utility Gas Turbine (발전용 저 NOx 가스터빈의 연소모드 변환시기의 연소특성 전산해석)

  • Jeong, Jai-Mo;Chung, Jae-Hwa;Park, Jung-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.127-134
    • /
    • 2004
  • Three-dimensional numerical investigations are carried out to understand the combustion characteristics inside a DLN(dry low NOx) utility gas turbine combustor during the combustion mode change period by applying transient fuel flow rates in fuel supply system as numerical boundary conditions. The numerical solution domain comprises the complex combustor liner including cooling air holes, three types of fuel nozzles, a swirl vane, and a venturi. Detailed three-dimensional flow and temperature fields before and after combustion mode changeover have been analyzed. The results may be useful for further studies on the unfavorable phenomena, such as flashback or thermal damage of combustor parts when the combustion mode changes.

COMBUSTION CHARACTERISTICS AND HEAT FLUX DISTRIBUTION OF PREMIXED PROPANE MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • PARK K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • This work is to investigate the surface heat flux and combustion characteristics of premixed propane mixture in a constant volume chamber. The experiment of heat flux and combustion characteristics of premixed propane mixture are performed with various equivalence ratio and initial pressure conditions. Based on the experimental results, it is found that the maximum instantaneous temperature is increased with the increase of initial pressure in the chamber. There are significant differences in the burning velocity of premixed propane mixture at different measuring points in the constant volume combustion chamber. A]so, the trends of temperature difference at each measuring points are similar to the burning velocity in the combustion chamber. It is concluded that the total heat loss during the combustion period is affected by the equivalence ratio and the initial condition of fuel-air mixture.

Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Reentrant Angle and Cupola Height of Bowl Center- (리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -리엔트런트 각도 및 중앙돌기부 높이의 효과-)

  • Kwon, S.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.37-45
    • /
    • 1995
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.I. diesel engine. The main factor was the cupola height of bowl center and the reentrant angle of combustion chamber, and the cylinder pressure, engine performance and emissions of the engine using the total 11 kinds of the combustion chamber were measured by test. The results are as follows. The NOx decreases by increasing the cupola height of bowl center because it makes the decreasing of maximum combustion pressure by the heat loss and smooth combustion from good airflow. The smoke increases by increasing the reentrant angle at high speed range of the engine, but decrease at low and medium speed range until the reentrant angle becomes $15^{\circ}$.

  • PDF

The Effects of EGR and EGR Induction Point on Combustion Noise of a Passenger Diesel Vehicle (승용 디젤엔진의 EGR과 Induction위치에 따른 소음 영향)

  • Kang, Sang-Kyu;Kim, Jae-Heon;Baek, Sung-Nam;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.393-396
    • /
    • 2007
  • EGR is well established and efficient means to reduce NOx emissions. The increase of EGR rate affects the ignition delay of the combustion due to the lower oxygen availability. The increasing of the ignition delay period causes large combustion noise. In this study, the effects of EGR and Induction Point on combustion noise are investigated by measuring cylinder pressure and noise. As a result, The Combustion noise is markedly increased under the application of EGR. The increased premixed distance by displacing EGR Induction point in flow direction causes the uniform EGR distribution and the modulation level of the combustion noise is reduced slightly.

  • PDF

Numerical Study of Flame Structures and Conditional Statistics in Turbulent Spray Jet Combustion (난류분무제트연소에서의 화염구조와 조건평균 통계에 대한 수치적 연구)

  • Seo, Jaeyeob;Huh, Kang Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.46-52
    • /
    • 2012
  • 3D DNS is performed for n-heptane spray turbulent jet combustion. Diesel-like conditions are considered including single and multiple injections. Conditional statistics are obtained for multiple Lagrangian flame groups of sequentially evaporating fuel. Each fuel group represents the conditional statistics of an independent Lagrangian flame group. Sequentially evaporating fuel goes through different histories and residence times over the ignition delay period. Multiple flame groups are required for accurate description of combustion of a spray jet that goes through a long injection duration or multiple injections.

Combustion Chamber Shape Effects on Flame Temperatgure and KL Value in a Diesel Engine (디젤엔진에서 연소실 형상이 화영온도 및 KL치에 미치는 영향)

  • 이선봉;이태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.99-106
    • /
    • 1999
  • The present study deals with the effect of combustion chamber shape on in-cylinder soot oxidation characteristics of a D.I . diesel engine. The analysed combustion chambers were a toroidal and a reentrant with a projection(Complex). The two-color method was used to measure in-cylinder flame temperature and KL value which is approximately proportional to the soot amount along the optical path. In addition, heat release rate was calculated from the in-cylinder pressure data. From these investigations , the soot oxidation of the reentrant and the complex which were strengthen squish flows went worse in late combustion period under heavy-load operation compared to that of the toroidal at retarded fuel injection timing . It might be the cause of the flame holding that squish lip depress the outflow of flame from the bowl to the entire combustion space.

  • PDF

Stabilization of Fuel F1ow in a Multi-Nozzle Combustion System Burning Natural Gas (천연가스 다노즐 열원설비의 연료 유동 안정화)

  • 박의철;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1255-1265
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient flow in a utility gas turbine burning natural gas. The solution domain encompasses the supply gas pressure regulator to the combustor of the gas turbine that employs multi-nozzle fuel injectors. Some results produced for verification in the present study agree suite well with the experimental ones. It is found that the total gas flow may decrease noticeably during its combustion mode change, which would be the reason of momentary combustion upset, when a reference case of opening ratios of control valves in the system is applied. Several parameters are then varied in order to make the total gas flow stable over that period of time. Results of this study may be useful to understand the unsteady behavior of combustion system burning natural gas.

  • PDF