• Title/Summary/Keyword: Combustion of a candle

Search Result 10, Processing Time 0.029 seconds

Comparison of Korean and American Elementary School Pre-Service Teachers' Concepts on Combustion (한국과 미국 초등 예비교사들의 연소에 대한 개념 비교)

  • Shin, Ae-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.4
    • /
    • pp.736-750
    • /
    • 2014
  • The purposes of this study were to investigate concepts of Korean and American elementary school pre-service teachers on combustion, and to compare the concepts of Korean pre-service teachers with those of American pre-service teachers. For this study, concept test on combustion was administered to 23 Korean and 18 American elementary school pre-service teachers. The test composed of 6 items: 'Definition of combustion', 'The reason why a candle in a glass bottle is blown out when the bottle was closed', 'The change of gases in the bottle when a candle burns in it', 'The combustion products of a candle', 'The combustion products of steel wool', and 'The combustion products of a substance'. The results showed that the rates of elementary school pre-service teachers who had scientific concepts on combustion were very low in both Korean and American pre-service teachers' groups, although they were a little different from items. However the rates of pre-service teachers who had partial concepts and misconceptions on combustion were high in two groups. The levels of Korean elementary school pre-service teachers' concepts were a little higher than those of American elementary school pre-service teachers' concepts. The contents and activities on combustion which are in Korean and American science textbooks seem to affect building up their concepts on combustion.

A New Approach to Teaching “Candle도s Combustion in a Bottle” Experiment (“병안의 촛불실험” 지도를 위한 새로운 접근)

  • 류재인;고한중;한광래
    • Journal of Korean Elementary Science Education
    • /
    • v.19 no.2
    • /
    • pp.15-27
    • /
    • 2000
  • The purpose of this study was to survey the thinking of children, preliminary elementary teachers and elementary teachers in relation to the experiment of candle's combustion in a bottle on the water, to develop some supplementary experiments for the correction of the misconception on this experiment and to propose a new teaching method for this subject-matter The results of this study can be summarized as follows. 1. Most of the answers are related to the simple observation as the extinguishing of candlelight and the water rising in the bottle after a candle's combustion. And it is appeared that all the groups are similarly short of the ability of experimental design to verify the cause and effect. 2. from the results of the developed supplementary experiments, it is concluded that the main cause of the water rising is not the combustion of oxygen, but the expansion of volume and the releasing of air in the bottle in the bottle by heat of candle's combustion. 3. Based on the above results, a new direction for the teaching method of this subject is proposed.

  • PDF

Development and Application Effect of Gas Concentration Measure Experiment for the Improvement of Elementary School Teachers' Concept on Combustion (초등교사의 연소 개념 향상을 위한 기체 농도 측정 실험 개발 및 적용 효과)

  • Kim, Eun-Young;Kim, Youngshin;Shin, Ae-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.296-307
    • /
    • 2015
  • The purposes of this study were to develop the experiment for gas concentration measure during combustion of a candle and to investigate the application effect of the experiment. For this study, 15 elementary school teachers were selected by considering their gender, career, 6th grade science teaching experience, and 6th grade science teaching experience according to 2007 revised s cience curriculum. The experiment using MBL is designed to confirm gas concentrations visually during the combustion of a candle which burns in an acrylic container. The experiment method is as follows. 1) Make two sets of holes in the container and then insert oxygen sensors and carbon dioxide sensors in the holes. 2) Burn a candle in the container and observe the changes in the burning of the candle. The experiment has checked oxygen concentration and carbon dioxide concentration in real-time and displays gas concentration changes by graphs. The results of the application effect of the experiment are as follows. Most elementary school teachers who had not had scientific concepts on combustion got acquainted with scientific concepts about ‘the reason why a candle is blown out when it is covered with a bottle’, and ‘the concentrations of oxygen and carbon dioxide before and after combustion’. In addition, about half of elementary school teachers got acquainted with scientific concepts about ‘the definition of combustion’, and ‘distribution of carbon dioxide during combustion’. Thus, the experiment to measure gas concentrations during combustion is helpful to improve elementary school teachers’ concepts on combustion.

Evaluation of the combustion chamber for burning candle and measuring the emission factor of its’ combustion products (양초 연소 시 발생되는 오염물질 방출계수 측정을 위한 연소실 제작과 평가)

  • Lim, Hyung-Jin;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.236-245
    • /
    • 2015
  • Recently, candles have been widely used to create a romantic atmosphere and to heat tea. In this study, a small combustion chamber for candle was designed using an 0.008 m3 bell jar. The emission factors of combustion products were then measured. The combustion chamber includes a glass dish, which prevents candle flame from affecting the composition of the gas emitted through the exhaust outlet. The outlet in the combustion chamber was designed as a cone shape, and it was lengthened to prevent flow from the outside, which could affect the homogeneous composition of the exhaust gas. The temperature at the outlet of the chamber was 34 ℃~41℃. The major combustion products of the candle, such as such aldehydes and acids, contained oxygen. The mass specific emission rates of benzene, toluene, ethylbenzene, and TVOC were 0.04 μg/g, 0.01 μg/g, 0.02 μg/g, and 3.81, respectively. The mass specific emission rates of formaldehyde, acetaldehyde and benzaldehyde were 4.48 μg/g, 1.09 μg/g, and 0.67 μg/g, respectively. Considering the different compositions of the candle samples, their mass specific emission rates were similar to those obtained by using a large chamber 0.17 m3~50 m3 in size.

Fabrication of Silicon Carbide Candle Filter and Performance Evaluation at High Temperature and Pressure (탄화규소 캔들형 필터의 제조 및 고온고압 하에서의 성능평가)

  • Lee, Sang-Hun;Lee, Seung-Won;Lee, Kee-Sung;Han, In-Sub;Seo, Doo-Won;Park, Seok-Joo;Park, Young-Ok;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.503-510
    • /
    • 2002
  • Silicon carbide candle filters for the pressurized fluidized bed combustion system were fabricated by extrusion process. Carbon black was added to control the porosity. Inorganic additives such as clay and calcium carbonate were added to exhibit appropriate strength. Silicon carbide layer with a finer pore size (mean pore diameter ~$10{\mu}m$) was coated on the silicon carbide support layer (mean pore diameter ~$47{\mu}m$, porosity ∼40%). After that, the filter was sintered at 1400${\circ}C$ in air. We evaluated the filtration performances of the filter at 500${\circ}C$ and $5kgf/cm^2$ of pressure. As a result, high separation efficiency, >99.999% was measured. It is expected that silicon carbide candle filter can be successfully used for the pressurized fluidized bed combustion system.

A Study on Combustion Property of Cellulose Insulation according to Particle Size (입도에 따른 셀룰로오스 단열재의 연소특성에 관한 연구)

  • Choi, Jeong-hwa;Kim, Hong;Yoo, Kyong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.62-67
    • /
    • 1996
  • The smouldering combustion of cellulose Insulation treated with boric acid - borax - aluminium sulfate as combustion retardants are examined by candle type combustibility tester. The flammability behavior of combustion process is LOI, Smouldering region, Smouldering, Flamming spread region and Flame spread region. In this experiment, Particle size of four examined LOI, L.Point, H.Point, at the biggest size show high LOI. The surface area is connected with thermal conduction. The phenomena of combustion transition are governed by quantity of combustible gas generation in heating zone of cellulose insulation.

  • PDF

Effects on Indoor Air Quality of Burning Chemicals (Scented Candles and Incense Sticks) (태우는 생활화학제품(향초와 인센스 스틱)의 사용이 실내 공기질에 미치는 영향)

  • Eun-Ah Park;Seungyeon Eo;Yerin Oh;Na-Youn Park;Myoungho Lee;Younglim Kho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Background: The use of scented candles and incense sticks, both of which are household products that are burned for indoor deodorization and calming effects, is increasing. Fine dust has been designated as a group 1 carcinogen by the International Agency for Research on Cancer. Volatile organic compounds (VOCs) affect air pollution and can cause diseases. Objectives: This study aims to determine the effect on indoor air quality by measuring PM2.5 and VOCs generated when burning scented candles and incense sticks. Methods: Scented candles and incense sticks were selected as household products to burn. As for the target sample, top-selling products (five types of scented candles, five types of incense sticks) were purchased online. The PM2.5 concentration according to time was measured immediately next to the sample and three meters away from each other in an enclosed space using a real-time aerosol photometer. VOCs were collected as samples under the same conditions using Tenax tubes and were quantitatively analyzed by TD-GC/MS. Results: In the case of scented candles, the concentration of PM2.5 did not increase during combustion and after being extinguished by placing a cover on the candle. For the incense sticks, the concentration of PM2.5 averaged 1,901.27 ㎍/m3. After burning scented candles and incense sticks, some VOCs concentrations were increased such as ethyl acetate and BTEX (benzene, toluene, ethylbenzene, xylene). Conclusions: Therefore, when using scented candles, extinguishment by placing a cover on the candle can be expected to reduce PM2.5. It is advisable to avoid using incense sticks because PM2.5 concentration increases from the start of combustion.

Elementary School Teachers' Concept of Combustion - Focus on Change of Gases - (연소에 대한 초등교사의 개념 - 기체변화를 중심으로 -)

  • Shin, Ae-Kyung;Moon, Hyun-Sook;Kang, Min-Seog
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.6
    • /
    • pp.942-957
    • /
    • 2011
  • The purpose of this research was to examine the concept of elementary school teachers of combustion. The participants were selected from the elementary school teachers who had various career experiences, 6th grade science teaching experiences, and academic backgrounds on science. For the purpose of this study, 12 elementary school teachers took the concept-test formed five questions on combustion and were interviewed. The concept-test was composed with 'The definition of combustion', 'The reason that the candle was blown out when glass was closed.', 'The existence of oxygen and carbon dioxide of before and after combustion in glass', 'Combustion of iron', 'Combustion products'. And the collected data by semi-structured interviews based on responses to the concept-test. During the analysis of the data, additional interviews by phone, e-mail and Internet messenger were conducted if necessary. The answers to each question were classified into three levels: (Scientific-concept(S), Partial-concept(P), Misconcept(M)). The research results showed that all teachers had misconceptions or partial-concept of more than 50 percent of each question. Teachers who had the 6th grade science teaching experience acquired scientific concepts of the combustion more than teachers who did not have the 6th grade science teaching experience. We should develop visualization materials about the change of gases during combustion and use these materials for implementation of the scientific concept.

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

Preparation of Photosynthesis Nanofiber Composite Membrane by Using Chlorophyll and Polymer Nanofiber (식물 엽록소와 고분자 나노섬유를 이용한 광합성 나노섬유복합막의 제조)

  • Yun, Jaehan;Jang, Wongi;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In this study, chlorophylls were been extracted from common local plants, deposited on polypropylene (PP) substrate using various approaches, and the oxygen generation effect of the chlorophylls were investigated. The loading of chlorophylls on the substrates was achieved by dipping and spraying methods, where the spraying coating showed overall better results regarding oxygen generation from the combustion experiments in the closed vessel or in the isolated vacuum oven cell than those of dip coating. In addition, a composite substrate was prepared by nylon6/6 nanofiber on the PP substrate, and it exhibited an increase in the activation of chlorophylls. In the case of samples containing titanium dioxide ($TiO_2$), the reaching time of oxygen concentration from 16% to 21% and the combustion test using a candle for a sample with 50% chlorophylls showed similar results to those of a sample without $TiO_2$. As such, combining a spray coating and $TiO_2$ incorporation into gas separation membrane systems are expected to be useful to understand the fundamentals of material properties for their applications as oxygen generation membranes and air filtration systems.