• Title/Summary/Keyword: Combustion model

Search Result 1,447, Processing Time 0.024 seconds

A Cold Flow Experiment for the Incinerator Shape Design (소각로의 형상설계를 위한 냉간유동실험)

  • 류창국;김숭기;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2184-2193
    • /
    • 1994
  • A flow visualization experiment using water-table models was performed. The water-table models simulated the two-dimensional cold flow fields inside the combustion chambers of incinerators. The flow were visualized by small but neutrally bouyant particles photographed by an overhead camera. The experimentally simulated flow fields apparently showed distinct features of two combustion chamber shapes; counter and parallel flow types. The significance of the secondary air injection on the mixing of combustion gases were clearly observed. The effects of the recirculation zones, which were present in the secondary chamber, were discussed by considering the importance of them for optimal combustion.

Swirl Flow Effects on Flame-Flame Interactions in a Model Lean-Premixed Gas Turbine Combustor (희박 예혼합 모델 가스터빈 연소기에서 스월유동 특성이 화염 간 상호작용에 미치는 영향)

  • Lee, Jiho;Park, Junhyeong;Han, Dongsik;Kim, Kyu Tea
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • The effect of swirl flow structures on combustion dynamics of two interacting, lean-premixed flames was experimentally investigated, with a particular emphasis on swirl numbers and swirl rotational directions. Our results show that the amplitude of limit cycle oscillations is very sensitive to the combination of swirl numbers and rotational directions, while the instability frequency remains nearly unchanged. The counter-rotating cases show significantly lower pressure perturbations, and this behavior appears to be related to the formation of compact interacting zone with higher heat release rate, indicating the presence of increased flame surface wrinkling caused by intense turbulence.

Theoretical-Numerical Modeling of High-Frequency Combustion Instabilities with Linear Waves (선형 고주파 연소불안정의 이론-수치적 예측)

  • Lee, G.Y.;Yoon, W.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.125-135
    • /
    • 2001
  • Aiming at a direct, also more realistic, prediction of unstable waves evolving in the combustion chamber, present paper introduces a new analytical method. Instability equations are freshly formulated, and solve the time-integrated ODEs for amplification factors to find the transients of pressure and velocity fluctuations. Present numerical approach requires no separate treatments for nonlinearities. Preliminary numerical experiments for unstable waves in quasi-one-dimensional rocket combustor, show validity and applicability of present model, and promise for its practical use. Study for the complex models for physics, especially velocity- and pressure-coupled responses, and inclusion of multi dimensionality remains as future tasks.

  • PDF

The Effect of Coal Particle Arrangement and Size Difference on Combustion Characteristics (미분탄 입자의 크기 차이와 배열이 연소특성에 미치는 영향)

  • Kim, Ki-Duck;Kim, Ho-Young;Cho, Chong-Pyo;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.47-53
    • /
    • 2007
  • The laminar combustion characteristics of interacting coal particles in a convective flow are numerically investigated at particle arrangement and size difference. The numerical simulations, which use the two-step global reaction model to account for the surrounding gas effect, show the detailed interaction among the inter-space particles, undergoing devolatilization and subsequent char burning. Several parametric studies, which include the effect of the gas temperature (1700 K), high pressure(10 atm) and variation in geometrical arrangement of the particle diameter on the volatile release rate and the char combustion rate, have been carried out. The comparison indicates that the shift to the multiple particle arrangement resulted in the substantial change of the combustion characteristics and that the volatile release rate of the interacting coal particles exhibits a strong dependency on the particle spacing and size difference.

  • PDF

CFD STUDY ON THE COMBUSTION CHAMBER OF A 1 kW CLASS STIRLING ENGINE (1 KW급 LNG 스털링 엔진 연소실 수치해석)

  • Ahn, J.;Lee, Y.S.;Kim, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.252-257
    • /
    • 2010
  • The availability of the thermal energy has been deeply recognized recently to encourage the cascade usage of thermal energy from combustion. Within the frame work, a 1 kW class Stirling engine based cogeneration system has been proposed for a unit of a distributed energy system. The capacity has been designed to be adequate for the domestic usage, which requires high compactness as well as low emission and noised. To develop a highly efficient system with satisfying these requirements, a premixed slot flame burner has been proposed and a series of numerical simulation has been performed to establish a design tool for the combustion chamber. The thermal radiation model has been found to highly affect the computational results and a proper resolution to analyze the heat transfer characteristics of the high temperature heat exchanger. Finally, the combustion characteristics of the premixed flame with the metal fiber type burner has been studied.

  • PDF

버너Windbox의 설계기술에 관하여

  • Han, Yong-Sik;Kim, Myeong-Bae
    • 한국연소학회:학술대회논문집
    • /
    • 1995.06a
    • /
    • pp.123-130
    • /
    • 1995
  • An experimental study for the improvement of combustion air distribution in the exit of burner windbox is carried out. Since the distribution of combustion air in the burner directly affects the stability and the shape of flame, it should be as uniform as possible. Furthermore multi-burner windbox should be designed to supply the suitable quantity of combustion air for each burner. For these purposes, thin splitting plates are installed in the windbox, which make the flow control and setup the circumferentially uniform pressure field at each windbox exit. The effect of splitters on the velocity distribution of combustion air is investigated by the use of a small sized two-burner windbox model having a dynamical similarity to the prototype. Even though not the best one, a configuration of splitters which seems to give a practically useful result is suggested.

  • PDF

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Jeong, Eun-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.197-204
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame- holder.

  • PDF

A Study on Spray Distribution of Diesel Nozzles (디젤노즐의 분무 거동에 관한 연구)

  • 송규근;오영택;안진근;김강출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.120-127
    • /
    • 1997
  • A diesel engine is one of the major prime movers owing to its high thermal efficiency. But due to the recent attention for the environmental pollution, the emissions of diesel engine became a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. Because the diesel combustion is strongly controlled by a fuel spray injected into a combustion chamber. This study provides the informations for the diesel spray with the atmospere condition in combustion chamber by PMAS. As the result, the spray tip penetration and angle is increased with the increase of spray pressure and nozzle diameter. And the comparisions between the measured outline of the free-spray and the calculated model have been conducted and obtained the resonable results.

  • PDF

Prediction of ash deposition propensity in a pilot-scaled pulverized coal combustion (미분탄 연소에 따른 슬래깅 예측 모델 개발 및 검증)

  • Jang, Kwonwoo;Han, Karam;Huh, Kang Y.;Park, Hoyoung
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.87-90
    • /
    • 2013
  • In pulverized coal fired boilers, slagging and fouling may cause significant effect on the operational life of boiler. As increasing a consumption of low rank coal, slagging and fouling are main issues in pulverized coal combustion. This study predicts ash deposition propensity in a 0.7 MW pilot-scale furnace. Slagging model is employed as a User-Defined Function (UDF) of FLUENT and validated against measurement and prediction. The results show good agreement compared with experiment. There is need to development of a pulverized coal combustion and slagging analysis at low coal.

  • PDF

A Study of Supersonic Combustion using Various Liquid Hydrocarbon Fuels

  • Hashimoto, Susumu;Hiramoto, Ayumu;Tsue, Mitsuhiro;Kono, Michikata;Ishikawa, Yuta;Suzuki, Shunsuke;Ujiie, Yasushige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.340-345
    • /
    • 2008
  • Liquid hydrocarbon fuels are gathering increasing attention as candidates for a scramjet engine fuel. Experimental researches on supersonic combustion of kerosene have been conducted in model scramjet combustors. Through these works, understanding of combustion characteristics of kerosene have been revealed on some level, and so we decided to work on other kinds of liquid hydrocarbon fuels in order to explore effects of fuel properties on supersonic combustion performances, especially self-ignition and flame-holding. In addition, comparing the results of new fuels with kerosene, the relationship between fuel properties and supersonic combustion characteristics was discussed.

  • PDF