• Title/Summary/Keyword: Combustion heat

Search Result 1,726, Processing Time 0.022 seconds

A Study on the Prediction of Combustion Gas Behavior Induced by Fire in a Building (건물내 화재에 의한 연소가스 거동 예측에 관한 연구)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.267-281
    • /
    • 1994
  • The Combustion gas behavior induced by fire in a building is numerically investigated. The typical building for this analysis is partially divided by a vertical baffle projecting from the ceiling. The solution procedure includes the low Reynolds number ${\kappa}-{\varepsilon}$ model for the turbulent flow and the discrete ordinates method is used for the calculation of radiative heat transfer equation. The effects of the location and size of fire source and baffle length on velocity and temperature distributions, species mass fraction and flame location are analyzed. As the results of this study, it is found that the case when the fire source is located at the vertical wall is more dangerous than at the bottom wall in view of the combustion products and flame location. It is also found that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

Combustion Characteristics of a Staged Burner for a Boiler (다단 연소 버너의 보일러 연소실에서의 연소 특성)

  • Ahn, Joon;Kim, Jong-Jin;Kang, Sae-Byul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.555-558
    • /
    • 2008
  • The demand for a boiler with low NOx burner is increasing with the recent strict NOx regulation. Staged burner is a common low NOx burner to suppress the formation of thermal NOx by yielding local fuel rich and fuel lean condition. The staged burner gives fire with bigger frontal area and length compared with a conventional burner, which changes heat transfer characteristics in the combustion chamber. The heat transfer and exhaust gas characteristics has been studied in the present study for a 0.5 t/h class furnace type boiler adopting the staged burner. A numerical simulation has been conducted to clarify the detailed physics inside the combustion chamber.

  • PDF

The Effects of Combustion Parameters on the Characteristics of a Steam-Methane Reformer (연소 변수가 수증기-메탄 개질기의 특성에 미치는 영향)

  • Lee, Jae-Seong;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.29-31
    • /
    • 2012
  • The effects of combustion parameters on the characteristics of a steam-methane reformer. The reformer system was numerically simulated using a simplified two-dimensional axisymmetric model domain with an appropriate user-defined function. The fuel ratio, defined as the ratio of methane flow rate in the combustor to that in the reactor, was varied from 20 to 80%. The equivalence ratio was changed from 0.5 to 1.0. The results indicated that as the fuel ratio increased, the production rates of hydrogen and carbon monoxide increased, although their rates of increase diminished. In fact, at the highest heat supply rates, hydrogen production was actually slightly decreased. Simulations showed that equivalence ratio of 0.7 yielded the highest steam-methane mixture temperature despite a 43% higher air flow rate than the stoichiometric flow rate. This means that the production of hydrogen and carbon monoxide can be increased by adjusting the equivalence ratio, especially when the heat supply is insufficient.

  • PDF

Thermal Characteristics of Hybrid Solar Receiver using a Solar and Combustion heating (태양열과 가스 연소열을 적용한 복합 태양열 흡수기의 열특성 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Yoon, Hwan-Ki;Yu, Chang-Kyun;Lee, Sang-Nam
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.33-38
    • /
    • 2006
  • The Dish/Stirling system with the Stirling engine is currently used to convert solar energy directly to electrical energy. Successful operation of dish/Stirling system is supported by hybrid system, which will allow continuous operation driven by solar and combustion heating. The hybrid Receiver has to be provided with an additional combustion system. The heat pipe receiver and conbustion system were manufactured and tested for thermal characteristics of receiver. Maximum temperature difference along the heat pipe surface is $200^{\circ}C$. Emission measurements showed low NOx values of 28 to 46 ppm and very high CO values of 18 to 201 ppm.

  • PDF

A Prediction of DI Diesel engine Performance using the Multizone Model (Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구)

  • ;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

Sequential Catalytic Combustion System (순차식 촉매연소 시스템)

  • 유상필;정남조;이승재;류인수;강성규;송광섭
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.197-200
    • /
    • 2004
  • Compared to conventional flame combustion, catalytic combustion had the advantage of oxidation of V.O.C. gas which was high voluminous, low caloric mixture flow. However, the temperature of mixture gas should be over the one of catalytic reaction start and the control of reaction on the catalytic surface tends to be vulnerable. To overcome these obstacles, composition of both catalytic combustor and heat exchanger was devised and named the sequential catalytic combustion system. In this system, only trigger unit needed preheating process for transient starting time. Once trigger unit was ignited, the next unit w3s supplied heat to ignite from that and same process was performed to the last one sequentially. When it come to steady state, whole mixture gas was oxidated at each unit simultaneously and preheating for trigger unit was not needed any more. System of 100 kcalh/hr capacity was devised and operated successfully.

  • PDF

Effect of radiation model on simulation of water vapor - hydrogen premixed flame using flamelet combustion model in OpenFOAM

  • Kim, Sangmin;Kim, Jongtae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1321-1335
    • /
    • 2022
  • This study was conducted to investigate the effect of absorption coefficient models on the P1 radiation model for a premixed hydrogen flame containing the water vapor. A CFD combustion simulation analysis was performed using XiFoam, one of the open-source CFD solvers in OpenFOAM. The solver using the flamelet combustion model has been modified to implement radiative heat transfer. The absorption coefficient models used in this study the grey-mean model and constant model, and for comparison, case without radiation was added. This CFD simulation study consisted of benchmarking the THAI HD-15 and HD-22 experiments. The difference between the two tests is the inclusion of water vapor in the condition before ignition. In the case of the HD-22 experiment containing water vapor in the initial condition, the simulation results show that the grey-mean absorption coefficient model has a strong influence on the temperature decrease of the flame and on the change in pressure inside the vessel.

Properties of Mortar mixed with Lignocellulosic Combustion By-products (목질계 연소부산물 혼입 모르타르 물성 평가)

  • Jeong, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.77-78
    • /
    • 2023
  • This paper experimentally examined the recycling of combustion by-products emitted from a combined heat and power plant using lignocellulosic biomass fuel. Physical and chemical analyzes were performed on Bio-SRF and three types of wood pellet combustion by-product samples (fly-ash, FA). As a result of the experiment, the compressive strength of mortar substituted with 5, 10, and 20% of FA compared to the cement weight was found to be excellent, and its recyclability was confirmed as a substitute for existing admixtures.

  • PDF

Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles (이중열원을 이용한 전기자동차용 히트펌프 시스템의 난방 성능 특성에 관한 연구)

  • Woo, Hyoung Suk;Ahn, Jae Hwan;Oh, Myoung Su;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • An electric vehicle is an environment-friendly automobile which does not emit any tailpipe pollutant. In a conventional vehicle with an internal combustion engine, the internal cabin of the vehicle is usually heated using waste heat from the engine. However, for an electric vehicle, an alternative solution for heating is required because it does not have a combustion engine. Recently, a heat pump system which is widely used for residential heating due to its higher efficiency has been studied for its use as a heating system in electric vehicles. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was measured by varying the mass flow rate ratio. The experimental results show that the heating capacity and COP in the dual heat source heat pump were increased by 20.9% and 8.6%, respectively, from those of the air-source heat pump.

A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner (다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) -)

  • Shin, Myung-Chul;Ahn, Je-Hyun;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF