• Title/Summary/Keyword: Combustion heat

Search Result 1,725, Processing Time 0.024 seconds

Fire Retardancy of Recycled Polyurethane Foam Containing Phosphorus Compounds (인계화합물을 포함한 재활용 폴리우레탄폼의 난연성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.182-189
    • /
    • 2007
  • Used polyurethane was chemically degraded by treatments with flame retardants such as tris(3-chloropropyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). The structure of degraded products (DEP) was analyzed by FT-IR and P-NMR and it turned out to be phosphorus containing oligourethanes. Rigid polyurethane foam was produced by using the degraded products (DEP) as flame retardants. The flammability of recycled rigid polyurethane was investigated. The recycled polyurethane shows a reduced flammability over virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, the combustion parameters of the foam was measured by a cone calorimeter. Scanning electron micrograph of recycled PU shows the same uniform cell morphology as virgin PU.

Investigation of Combustible Characteristics for Risk Assessment of Benzene (벤젠의 위험성 평가를 위한 연소 특성치 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.28-33
    • /
    • 2009
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosion limit, flash point, autoignition temperatures(AITs), minimum oxygen concentration(MOC), heat of combustion etc.. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of benzene, lower explosion limit(LEL) at $25^{\circ}C$, the temperature dependence of the explosion limits and flash point were investigated. And the AITs for benzene were experimented. By using the literatures data, the lower and upper explosion limits of benzene recommended 1.3 vol% and 8.0 vol%, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for benzene, and the experimental AIT of benzene was $583^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of benzene is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Prediction of Soot Emissions and Particle Size distribution by KIVA3V and SWEEP in a diesel engine (KIVA3V와 SWEEP을 이용한 디젤 엔진에서의 soot 총량 및 입자 크기 분포 예측)

  • Lee, Jaeseo;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.129-132
    • /
    • 2012
  • Computation is performed to predict number density, volume fraction and size distribution of soot particles in typical operating conditions of a diesel engine. KIVA has been integrated with the CMC routine to consider turbulence/chemistry coupling and gas phase kinetics for heat release and soot precursors. The compositions of soot precursors are estimated by tracking Lagrangian particles to consider spatial inhomogeneity and differential diffusion in KIVA. The soot simulator SWEEP is employed as a postprocessing step to calculate conditional and integral quantities of soot particles.

  • PDF

Aluminum ignition in laser-generated aluminum particles in high temperature and high pressure environment (고온 고압 환경에서 레이저를 이용한 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Park, Jeong Su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.101-103
    • /
    • 2012
  • Characteristic of aluminum ignition under high temperature and high pressure is studied using lasers. The laser ablation method is used to generate aluminum particles exposed to a high pressure by using a nanosecond pulsed laser where the range of ablation pressure varies between 0.35 and 2.2 GPa. A $CO_2$ laser is used to supply radiative heat to the aluminum target surface for providing high temperature ranging between 5000~9300 Kelvin. The ignition is confirmed using spectroscopy analysis of AlO vibronic band 484 nm wavelength. Also the radiative temperature is measured in various high pressure range for tracing the ignition temperature in high pressure conditions.

  • PDF

A study on Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 층류 동축류 제트화염에서의 화염진동에 관한 실험적 연구)

  • Lee, Won June;Park, Jeong;Kwon, Oh Boong;Yun, Jin Han;Keel, Sang In;Kim, Tae Hyung;Kim, Young Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.19-22
    • /
    • 2012
  • Experimental study in coflow jet flames has been conducted to investigate effects of adding Helium to coflowing air-side in self-excitation. The Differences between buoyancy-driven and diffusive-thermal self-excitations with the same order of O(1.0 Hz) in self-excitation are explored and discussed in laminar coflow jet flames.

  • PDF

Thermodynamic Performance Evaluation of an Integration Design between the Combined-cycle and Air Separation Unit in an IGCC Power Plant (IGCC 발전 플랜트에서 복합발전공정-공기분리장치의 연계에 관한 열역학적 성능 평가)

  • Won, On Nu-ri;Kim, Hyun-jeong;Park, Sung-koo;Na, Jong-moon;Choi, Gyung-min;Kim, Duck-jool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.49-51
    • /
    • 2012
  • In this paper, the integration issue, such as an air-side integration design between the gas turbine and air separation unit, is described and analyzed by the exergy and energy balance of the combined-cycle power block in an IGCC power plant. The results showed that the net power of the system was almost same, but that of the gas turbine was decreased as the integration degree increased. The highest exergy loss was occurred in the combustor of gas turbine, which was affected by the chemical reaction, heat conduction, mass diffusion, and viscous dissipation.

  • PDF

Experimental Study on Behavior near Extinction in Buoyancy-minimized Counterflow Diffusion Flame (부력 효과의 최소화를 통한 소화 근처 대향류 확산화염 거동에 관한 실험적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Yun, Jin-Han;Keel, Sang-In;Kim, Tae Hyung;Kim, Young Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.23-26
    • /
    • 2012
  • Experimental study was conducted to elucidate flame extinction phenomena in counterflow flame. Using a curtain helium flow significantly reduced buoyancy such that the flame can be positioned at the center between the upper and lower nozzles even at the velocity ratio of 1.0. The curves of critical diluent mole fraction versus global strain rate have C-shapes. The flame oscillation was observed prior to low strain rate flame extinction at both flame conditions with and without minimizing buoyancy force. The results show that, at low strain rate flame, the self-excitation frequency with the order of 1.0 Hz in the case of utilizing pure helium gradually decreases in increase of $N_2$ mole fraction in the curtain flow, meaning that buoyancy suppresses the self-excitation of the outer edge flame.

  • PDF

Mechanism of Combustion Instability in Supersonic Combustor (초음속 연소기 내의 연소 불안정 메커니즘)

  • 최정열
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.191-194
    • /
    • 2003
  • A series of computational simulations have been carried out for non-reacting and reacting flows in a supersonic combustor configuration with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure of 0.5 and 1.0 ㎫. The corresponding equivalence ratios are 0.17 and 0.33. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The role of the cavity, injection pressure, and amount of heat addition are examined systematically.

  • PDF

Development of Numerical Framework for Design and Analysis of Liquid Rocket Thrust Chambers (액체로켓 추력실 설계 및 성능 분석을 위한 통합해석기법 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.34-37
    • /
    • 2009
  • The present study presents a numerical methodology for early conceptual trade-off study between propulsive performance, cooling efficiency, weight and size, in which combustion and cooling precesses in regeneratively cooled rocket thrust chamber are interactively simulated. To address the capabilities and reliability of the design tool, some application results are given involving contour design, performance analysis, and wall cooling prediction as well as a systematic design evaluation.

  • PDF

Thermite Reaction Between CuO Nanowires and Al for the Crystallization of a-Si

  • Kim, Do-Kyung;Bae, Jung-Hyeon;Kim, Hyun-Jae;Kang, Myung-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.234-237
    • /
    • 2010
  • Nanoenergetic materials were synthesized and the thermite reaction between the CuO nanowires and the deposited nano-Al by Joule heating was studied. CuO nanowires were grown by thermal annealing on a glass substrate. To produce nanoenergetic materials, nano-Al was deposited on the top surface of CuO nanowires. The temperature of the first exothermic reaction peak occurred at approximately $600^{\circ}C$. The released heat energy calculated from the first exothermic reaction peak in differential scanning calorimetry, was approximately 1,178 J/g. The combustion of the nanoenergetic materials resulted in a bright flash of light with an adiabatic frame temperature potentially greater than $2,000^{\circ}C$. This thermite reaction might be utilized to achieve a highly reliable selective area crystallization of amorphous silicon films.