• Title/Summary/Keyword: Combustion flame

Search Result 2,024, Processing Time 0.022 seconds

An experimental study on the combustion characteristics using pure oxygen in a turbulent diffusion flame (순산소를 이용한 난류확산화염의 연소 특성에 관한 실험적 연구)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.60-66
    • /
    • 2001
  • Combustion using pure oxygen instead of air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and ultra high temperature flame, being used on the industrial spot. But information about it is not so enough yet. Flame figure, temperature distribution and emission concentration were measured with oxygen excess ratio and swirl number in a turbulent diffusion flame to investigate the combustion characteristics using pure oxygen. The results showed that flame figure became different as long as oxygen excess ratio varied and that concentration of NO and CO increased suddenly around ${\lambda}$=1.5.

  • PDF

Basic Study on Combustion Characteristics of Coaxial Premixed Burner with the Addition of $Al_2O_3$ Particles (산화 알루미나 입자 첨가에 따른 동축류 예혼합 연소기의 연소 특성 기초연구)

  • Park, Seung-Il;Kim, Go-Tae;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • Thermal spray technology has been used in many industrial application. Especially, thermal spray coating have been employed with the purposes of achieving better resistances in abrasion, heat and corrosion. In the previous studies on the thermal spray coating, thermal spray characteristics from the perspective of combustion engineering have not been investigated sufficiently, while the material characteristics of the coated substrates have been investigated widely. In this study, the effect of spray particles on the flame behavior was experimentally investigated. The amount of the injected particles was measured using the light scattering method and the temperature of the particles was estimated using a two-color method. Various flame-spray interactions were observed and it was found that the high temperature zone near the flame is elongated by particles density. Based on these results, the applicability of the light scattering method and the two-color method was discussed.

Microgravity Combustion Characteristics of Polystyrene Spheres with Various Ambient Gases (분위기 가스 변화에 의한 폴리스틸렌 구의 미소중력 연소특성)

  • Choe, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1509-1517
    • /
    • 2001
  • An experimental and numerical analysis were conducted to investigate the transient temperature distribution and flame propagation characteristics over an inline polystyrene spheres under microgravity. From the experimental, a self-ignition temperature of polystyrene bead was 872 K under gravity. Flame spread rates were 4.7-5.1 mm/s with ambient gas N$_2$and 2.3-2.5 mm/s with ambient gas CO$_2$, respectively. Flame radius diameters were 17 mm with ambient gas N$_2$and 9.6 mm with ambient gas CO$_2$, respectively. These results suggest that the flame propagation speed could be affected in the Diesel engine and the boiler combustor by EGR. In terms of the flame spread rate and the transient temperature profile, numerical results have the qualitative agreement with the experiment.

Flame Image Processing System for Combustion Condition Monitoring of Pulverized Coal Firing Boilers in Thermal Power Plant (발전용 미분탄 보일러의 연소 상태 감시를 위한 화염 영상 처리 시스템)

  • Baek, Woon-Bo;Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1119-1123
    • /
    • 2006
  • The flame image processing and analysis system has been investigated for the optimal pulverized coal firing of thermal power plant, especially for lower nitrogen oxide generation and more safe operation. We aimed at gaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the condition of combustion on the individual humors. Its feasibility test was undertaken with a pilot furnace for coal firing, through which the system was observed to be effective for the monitoring of the combustion condition of pulverized coal firing boilers.

The Flame Image Observation for Monitoring Management of Pulverized Coals Firings and its Feasibility Test to Boilers for Thermal Power Plant (미분탄 연소의 감시 관리를 위한 화염영상 감시 및 발전용 보일러 적용시험)

  • Baek, Woon-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2008
  • The flame image observation and analysis has been investigated for combustion monitoring and management of the pulverized coal firing for thermal power plant, especially for lower nitrogen oxide generation and safer operation. We aimed at obtaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the conditions of combustion on the individual homers. Its feasibility test was undertaken with Samchonpo thermal power plant #4 unit which has 24 burners, through which the system was observed to be effective for evaluating the combustion conditions and continuous monitoring to prevent future loss of ignition.

An Experimental Study on the Measurement of Radicals in Flame for Real TIme Combustion Control (실시간 연소제어를 위한 화염 내 라디칼 계측기법 연구)

  • Kwon, Seung-Jin;Kim, Se-Won;Shin, Myung-Chul;Ryu, Tae-U;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.53-59
    • /
    • 2006
  • This study is measurement of radicals in gas & light oil diffusion flame focused on burner exit. The goal of this study is to analyse the relationship between flame chemiluminescence($OH^{\ast}$, $CH^{\ast}$, $C_2^{\ast}$) intensities and flame conditions. The investigation performed turbulent diffusion flame of commercial burner in varying the excess air ratio from 1.0 to 1.8. The optical emissions were measured by photomultiplier(PMT) using optical band pass filter and spectrometer system. The effects of excess air ratio and NOx emission characteristics on the radical emission intensities were investigated experimentally.

  • PDF

Combustion Characteristics of a Turbulent Diffusion Flat Flame According to Oxygen Enriched Concentration of Combustion Air (연소공기의 산소부화농도에 따른 난류확산 평면화염의 연소특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by improving the burning rate and by increasing the flame temperature. Flame figures, OH radical intensities, temperature distributions and emissions concentration were examined according to oxygen enriched concentration(OEC) in a turbulent diffusion flat flame. As long as the oxygen enriched concentration was increased, the length and volume of the flat flame was decreased while OH radical intensity was raised and the flame temperature was increased. However, RMS of the fluctuating temperature was decreased, and more homogeneous temperature field was formed. Thermal NO also was increased with increase of oxygen enriched concentration, but CO was decreased due to the increase of chemical reaction rate.

Laminar Flame Speed Model of Fuel Blends at Elevated Temperatures and Pressures (고온 고압에서 혼합연료의 층류화염속도 예측 모델에 대한 연구)

  • Byun, Jung Joo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.9-16
    • /
    • 2012
  • Iso-octane, n-heptane and their blends were tested in a constant volume combustion chamber to measure laminar flame speeds. The experimental apparatus was automatically controlled to enhance the accuracy and data acquisition speed. A large database of laminar flame speeds at elevated temperatures and pressures was established. From this database, laminar flame speeds of iso-octane, n-heptane and their blends were investigated and analysed to derive new correlation to predict laminar flame speeds at any blending ratio. The new flame speed model was successfully applied to these fuels with limited range of errors.

A Visualization of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave by Schlieren Photography (정상초음파가 개재하는 프로판/공기 예혼합화염의 슐리렌기법에 의한 가시화)

  • Lee, Sang Shin;Kim, Jeong Soo;Lee, Do Hyong
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability. Visualization technique utilizing the Schlieren photography was employed for the observation of structural variation of the flame reaction zone. Evolutionary characteristics of the flame front were caught by the high-speed Schlieren image, through which local flame velocity of the moving front were analyzed in detail.

Flame Dynamic Response to Inlet Flow Perturbation in a Turbulent Premixed Combustor (난류 예혼합 연소기에서의 흡입 유동 섭동에 대한 화염의 동적 거동)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • This paper describes the forced flame response in a turbulent premixed gas turbine combustor. The fuel was premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. To impose the inlet flow velocity, a siren type modulation device was developed using an AC motor, rotating and static plates. Measurements were made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The test results showed that flame length as well as geometry was strongly dependent upon modulation frequency in addition to operating conditions such as inlet velocity. Convection delay time between the velocity perturbation and heat release fluctuations was calculated using phase information of the transfer function, which agreed well with the results of flame length measurements. Also, basic characteristics of the flame nonlinear response shown in the current test conditions were introduced.

  • PDF