• Title/Summary/Keyword: Combustion flame

Search Result 2,024, Processing Time 0.038 seconds

A Study on Response Characteristics of Jet-diffusion Flame and Premixed Flame with Various Velocity Perturbations (제트확산화염과 예혼합화염의 다양한 속도 섭동에 대한 응답 특성)

  • Ahn, Myunggeun;Kim, Taesung;Kim, Heuydong;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of jet-diffusion flame and premixed flame. The experiment was conducted while varying the amplitude. Flame lengths were quantified for OH chemiluminescence measurement and compared with the result of the flame transfer function. Flame length and flame velocity perturbation were normalized and compared with the result of the flame transfer function. The comparison results appear that velocity perturbation and flame length oscillation of premixed flame show linear behaviors on the other hand jet-diffusion flame, amplitudes are more thant 0.20, shows nonlinear behaviors of flame velocity perturbation and flame length oscillation.

The Characteristics of Swirl Spray Combustion in Gas Turbine Combustor (가스터빈 연소기내의 선회분무연소 특성)

  • Hong, Jeong-Gu;Kim, Hyeok-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2721-2730
    • /
    • 1996
  • The present study conducted experimental study of spray combustion to investigate the effect of the inlet conditions of fuel and air on the flame structure, the flame stability and the characteristics of emission in the can-type model of a gas turbine combustor. In the experiment, the diameter of fuel droplet was measured using Malvern particle size analyser and temperatures in the combustion chamber were measured with R-type shielded thermocouple. In addition, flame structure was taken picture with camera and analysed. Gas analyser was also used to analyse the concentration of each components of exhausting gas. The experimental results showed that the flame condition was optimal with swirl number, 0.63 and equivalence ratio, 0.5 for controlling the flame stability, the combustion temperature and the NOx concentration. The present study concluded that both the flame structure and the emission formation were strongly affected by the swirl intensity, which selection was found as an important parameter for either stabilizing flame or lowering the quantity of NOx.

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability (저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.

The Influence of Combustion Flame on AC and DC Flashover Characteristics in the Air-Gaps Simulated Overhead Power Lines (가공(架空)전력선을 모의(模擬)한 공기 갭에서 교류 및 직류 섬락특성에 미치는 연소화염의 영향)

  • Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.152-159
    • /
    • 2010
  • A combustion flame under the overhead power lines may be caused by breakdown disturbances in power systems. In this study, experiments were conducted for the purpose of investigating the reduction in insulation strength caused by combustion flame and the shape changes of the flame, and flashover characteristics and extinction phenomena of the flame in the simulated conditions of overhead power lines were examined under the application of a.c. and d.c. high-voltages. As the results of the experimental investigation, it is demonstrated that flame can remarkably reduce breakdown voltages of the air-gap in shorter range of the gap distance. As the gap distance increases, flame was quenched, before the flashover, by corona wind generated from the needle electrodes.

2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine (가솔린엔진에서의 2차원 화염 가시화)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF

Flashover Characteristics of Vertical-type Model Power Line in the Presence of Combustion Flame (연소화염 존재 시 수직형 모델 전력선의 섬락 특성)

  • Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.58-65
    • /
    • 2009
  • A forest fire in the area of power line installations may be caused by flashover disturbances in power systems. In this study, experiments were conducted so as to investigate the reduction in dielectric strength caused by combustion flame, and flashover characteristics in the simulated condition of vertical-type model power lines were examined by making shorter and longer the horizontal distance(s) between combustion flame and high-voltage conductors under the application of 60[Hz] a.c. and d.c. high-voltages. As the results of the experimental investigation it is demonstrated that flame can reduce flashover voltages of the model air-gap in shorter range of the horizontal distance(s). Relative air density is considered in order to analyze the reduction causes of the flashover voltages, and it can be seen that the relative air density has a great influence on the flashover characteristics under the presence of combustion flame.

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구)

  • Park, Min-Chul;Oh, Sang-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

CONDITIONAL MOMENT CLOSURE MODELING OF TURBULENT SPRAY COMBUSTION IN A DIRECT INJECTION DIESEL ENGINE

  • HAN I. S.;HUH K. Y.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.571-577
    • /
    • 2005
  • Combustion of turbulent sprays in a direct injection diesel engine is modeled by the conditional moment closure (CMC) model. The CMC routines are combined with the KIVA code to provide conditional flame structures to determine mean state variables, instead of mean reaction rates. An independent transport equation is solved for each flame group with equal mass of sequentially evaporating fuel vapor. CMC calculation begins as the fuel mass for each flame group begins to evaporate with corresponding initialization conditions. Comparison is made with measured pressure traces for four operating conditions at different rpm's and injection conditions. Results show that the CMC model with multiple flame histories can successfully be applied to ignition and mixing-controlled combustion phases of a diesel engine.

Modeling of Partially Premixed Turbulent Combustion by Zone-Conditioned Conditional Moment Closure (Zone-conditioned CMC 모델을 이용한 부분예혼합 난류연소 모델링)

  • Lee, Eun-Ju;Kim, Seung H.;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.41-45
    • /
    • 2002
  • The zone-conditioned CMC equations are derived by taking an unconditional average of the generic conservation equations multiplied by delta and Heaviside functions in terms of mixture fraction and reaction progress variable. The resulting equations are essentially in the same form as the single zone CMC equations except for separate flow fields for burned and unburned gas. The zone-conditioned two-fluid equations are applied to a stagnating turbulent premixed flame brush of Cheng and Shepherd[5l. It is shown that the flame stretch factor is of crucial importance to accurately reproduce the measured mean reaction progress variable and conditional velocities. Further work is in progress for the relationship between surface and volume averages and extension to partially premixed combustion on the basis of a triple flame structure, e. g. in a lifted turbulent diffusion flame.

  • PDF