• Title/Summary/Keyword: Combustion catalyst

Search Result 257, Processing Time 0.034 seconds

A Study on the Flow Characteristics of the Catalytic Combustor for the Gas Turbine (가스터빈용 촉매 연소기의 유동 특성에 관한 연구)

  • Hong, Dong-Jin;Kim, Chong-Min;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.792-798
    • /
    • 2007
  • catalytic combustion is accomplished by the chemical reaction between fuel and oxidizer at the catalyst surface, different from conventional combustion. Therefore, it is important that the fuel and air stream are well mixed and supplied uniformly prior to the combustion region. If the flow is maldistributed, a hot spot may occur that can lead to subsequent catalyst and substrate damage. Therefore, in order to enhance the mixing and flow uniformity, in this study, the perforated plate is used. A numerical simulation is performed to investigate the variation of flow characteristics by changing various parameters. Under each condition, the uniformity of the flow stream at the entrance of the catalyst section is evaluated and compared. The results show that the uniformity can be effectively improved for most of the case by using the well-designed perforated plates.

Development of Monopropellant Thruster for Spacecraft Propulsion System (우주추진기관용 단일추진제 추력기 연구개발)

  • Kim, Su-Kyum;Won, Su-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.295-296
    • /
    • 2012
  • In Korea, study of monopropellant thruster have been started from 1990s by KARI (Korea Aerospace Research Institute). 5N hydrazine thruster that is a first Koreanized hydrazine thruster, have been used as flight model for several satellite. In parallel, in order to retain core technology for monopropellant thruster, catalyst and test facility development have been carried out and successfully completed. On the basis of these technology, KARI is performing development of 1N/200N hydrazine thruster and basic research of green propellant thruster.

  • PDF

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Development of the Catalytic Combustion Condensing Boiler of Lower Emission Type for Domestic Use (저공해형 촉매연소식 소형 콘덴싱보일러 개발)

  • Kim Hoyeon;Lee Seungho;Cho Wonihl;Baek Youngsoon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • Catalytic combustion is the environmental-friendly technology, which has been applied to a variety of areas for industrial and domestic use in recent years. Accordingly, this study performed the development of the catalytic manufacturing technology for the high temperature and of the catalytic combustor in priority, which were aimed to be aimed to a commercialized condensing boiler. Palladium(Pd) of a noble meta] was used as a catalyst for the high temperature and supported on $alumina(Al_{2}O_{3})\;and\;zirconia(ZrO_2)$ in constant weight ratio. Activity of Pd catalysts is compared and analysed in the catalytic combustion of natural gas. The ratio of $Pd/Al_{2}O_{3}\;=\;4$ was found to be better than any other weight ratios in activity and durability. The performance examination of catalysts and of combustion through the plate-type combustor made it possible to be developed the cylindrical-type combustor which has increased combustion area. Catalytic combustion condensing boiler of 25,000 kcal/hr class was also developed, which had the optimum combustion condition at the no221e of 5.95mm and the orifice of 21mm. This condition was determined through the performance experiments of catalytic combustion condensing boiler to which the cylindrical-type catalytic combustor was applied.

  • PDF

An Experimental Study on the Characteristics of Oxygen Combustion of Pulverized Coal and the $NO_x$ Formation using TGA/DSC and DTF (TGA/DSC, DTF를 이용한 미분탄의 산소 연소 및 $NO_x$ 배출 특성에 관한 실험적 연구)

  • Lee, Dae-Keun;Seo, Dong-Myung;Noh, Dong-Soon;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In a view of capturing $CO_2$ as a greenhouse gas, an experimental study was conducted on the combustion characteristics of pulverized coal in $O_2$/$CO_2$ environment using TGA/DSC and DTF facilities. The effects of gas composition and concentration on the processes of devolatilization and char burning experienced by coal particles in combustion furnace and on the concentration of products such as $CO_2$, CO and $NO_x$ were observed using TGA/DSC and DTF respectively. As results, it were found that the rate of devolitilation is nearly independent on the $O_2$ concentration if it is over 20% but the char burning rate is a sensitive function of $O_2$ percent, and the two rates can be controlled by $O_2$ concentration in order to be similar with those of air combustion case. It was also found that high concentration $CO_2$ can be captured by oxy-coal combustion and high concentration of CO and low value of $NO_x$ are exhausted in that case. Additionally, NO reducing reaction by CO with char as catalyst was observed and a meaningful results were obtained.

  • PDF

A Study on Combustion Characteristics of Methyl/Ethyl Butyrate blend (메틸/에틸 부틸레이트 혼합연료의 연소특성에 관한 연구)

  • Kim, Sungwoo;Lee, Minho;Kim, Jeonghwan;Min, Kyoung-Il;Kim, Kiho;Yim, Eui-Soon;Jung, Choong Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • This study is a part of the project that investigates a possibility of using methyl/ethyl butyrate as an alternative material of MTBE. To investigate characteristics of the two materials, a 2.0L 4-cylinders SI engine that was coupled to an 160kw EC engine dynamometer was used and operated several conditions. Two exhaust gas analyzer was used to measure CO, NOx and THC of after and before of a catalyst. Also, to compare combustion characteristics of the fuels a combustion analyzer was used for measuring pressure of inside of a cylinder. The results show no special difference between MTBE and the two materials from the emission and combustion characteristics aspect.

  • PDF

The investigation of characteristics of CuOx/SnO2-ZrO2 catalysts for toluene oxidation (톨루엔 산화에 의한 CuOx/SnO2-ZrO2 촉매의 특성고찰)

  • Kim Hye-Jin;Choi Sung-Woo;Lee Chang-Soep
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.669-674
    • /
    • 2005
  • Catalytic combustion of toluene was investigated on $CuOx/SnO_2-ZrO_2\;CuOx/SnO_2\;CuOx/ZrO_2$ catalysts prepared by impregnation. Characteristics of catalysts loaded on binary support and single support were observed by TPR, TPO, XRD, XPS techniques. The results on catalytic combustion showed that binary supports improve the activity of copper in the combustion of toluene. The reason for high catalytic activity on toluene combustion of $CuOx/SnO_2-ZrO_2$ catalyst was ascribed to oxidation$\cdot$reduction activity at low temperatures and stability of oxidation state after reduction.

Catalytic combustion type hydrogen gas sensor using TiO2 and UV LED (TiO2 광촉매와 UV LED를 이용한 접촉연소식 수소센서)

  • Hong, Dae-Ung;Han, Chi-Hwan;Han, Sang-Do;Gwak, Ji-Hye;Lee, Sang-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • A thick film catalytic gas sensors which can be operated at $142^{\circ}C$ in presence of ultra violet-light emitting diode has been developed to measure hydrogen concentration in 0-5 % range. The sensing material as a combustion catalyst consists of $TiO_{2}$ (5 wt%) and Pd/Pt (20 wt%) supported on $Al_{2}O_{3}$ powder and the reference material to compensate the heat capacity of it in a bridge circuit was an catalyst free $Al_{2}O_{3}$ powder. Platinum heater and sensor materials were formed on the alumina plate by screen printing method and heat treatment. The effect of UV radiation in the presence of photo catalyst $TiO_{2}$ on the sensor sensitivity, response and recovery time has been investigated. The reduction of operating temperature from $192^{\circ}C$ to $142^{\circ}C$ for hydrogen gas sensing property in presence of UV radiation is attributed to the hydroxy radical and superoxide which was formed at the surface of $TiO_{2}$ under UV radiation.

An Experimental Study on the Combustion Characteristics of a Catalytic Combustor for an MCFC Power Generation System (MCFC 발전시스템용 촉매연소기의 연소 특성에 관한 실험적 연구)

  • Hong, Dong-Jin;Ahn, Kook-Young;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the MCFC power generation system, the combustor supplies a high temperature mixture of gases to the cathode and heat to the reformer by using the off-gas from the anode; the off-gas includes high concentrations of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and avoid local heating, a catalytic combustor is usually adopted. Catalytic combustion is also generally accepted as one of the environmentally preferred alternatives for generation of heat and power from fossil fuels because of its complete combustion and low emissions of pollutants such as CO, UHC, and $NO_x$. In this study, experiments were conducted on catalytic combustion behavior in the presence of Pd-based catalysts for the BOP (Balance Of Plant) of 5 kW MCFC (Molten Carbonate Fuel Cell) power generation systems. Extensive investigations were carried out on the catalyst performance with the gaseous $CH_4$ fuel by changing such various parameters as $H_2$ addition, inlet temperature, excess air ratio, space velocity, catalyst type, and start-up schedule of the pilot system adopted in the BOP.

Effects of Catalyst Granule Failure in Monopropellant Satellite Thruster (단일추진제 위성추력기에서 촉매 파손에 의한 영향)

  • Hwang, Chang-Hwan;Lee, Sung-Nam;Baek, Seung-Wook;Kim, Su-Kyum;Yu, Myoung-Jong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2011
  • Various sizes of hydrazine monopropellant thruster have been used on satellite and space launcher vehicle. The test and handling procedure of hydrazine monopropellant thruster are usually difficult because of the toxicity of hydrazine and its decomposition product gases. Therefore, the numerical analysis can help understand the effects of various design parameters and can reduce the time as well as expenses. In this study, the numerical analysis is performed by modelling the catalyst bed as one dimensional porous medium. Thereby, resulting physical phenomena are examined by considering the variation of catalyst bed characteristics incurred by catalyst granule failure.