• 제목/요약/키워드: Combustion and emission characteristics

검색결과 915건 처리시간 0.025초

균일 예혼합 압축 착화 디젤 엔진의 예혼합 조건 변화에 따른 연소 및 배기 특성 (Effect of Premixing Condition on the Combustion and Emission Characteristics of HCCI Diesel Engine)

  • 김명윤;황석준;김대식;이기형;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.7-12
    • /
    • 2003
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To form homogeneous charge before intake manifold, the premixed fuel is injected into premixed tank by GDI injection system and the premixed fuel is ignited by direct injected diesel fuel. But in the case of high intake air temperature, premixed fuel is auto-ignited before diesel combustion and soot emission is increased. In the case of light load condition, the BSFC is improved by intake air heating because increased air temperature promoted the combustion of premixed mixture. NOx and smoke concentration of exhaust emissions are reduced compared to conventional diesel engine. The combustion characteristics of the HCCI diesel engine such as combustion pressure, rate of heat release, and exhaust emission characteristics are discussed.

  • PDF

수치해석을 이용한 맥동연소과정 및 NOx 배출특성 해석 (Numerical Simulations for Combustion and NOx Emission Characteristics in Oscillating Combustion Burner)

  • 김후중;조한창
    • 한국연소학회지
    • /
    • 제14권3호
    • /
    • pp.37-44
    • /
    • 2009
  • An experimental study was conducted to reduce NOx emission in RT(radiant tube)burner by using oscillating combustion processes in RIST. A solenoid valve gives the various oscillating conditions, such as oscillation frequency, duty ratio of fuel flow. In this study, we used commercial software, CFD-ACE+ to predict combustion and NOx emission characteristics for various experimental oscillation conditions. The effect of oscillation frequency and duty ratio on NOx emission will be discussed in terms of flow field, temperature and equivalence ratio distributions in detail.

  • PDF

H2/CO비, 희석량, 메탄/석탄가스비가 합성가스용 가스터빈의 연소특성에 미치는 영향 (Effect of H2/CO Ratio, Dilution Ratio, and Methane/Syngas Ratio on Combustion Characteristics of Syngas Turbine)

  • 이민철;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.59-60
    • /
    • 2012
  • This paper describes gas turbine combustion characteristics of synthetic gas which is mainly composed of hydrogen and carbon monoxide. The combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, liner and dump plane, and flame structure were investigated when changing when changing $H_2:CO$ ratio, dilution ratio, and $CH_4:syngas$ ratio. From the results, quantitative relationships are derived between key aspects of combustion performance, notably NOx emission. It is concluded that NOx emission of syngas is strongly influenced by the diluent heat capacity and combustion instability. Moreover, NOx control method using diluents such as $N_2$, $CO_2$, steam is verified.

  • PDF

모형 가스터빈 연소기의 2차공기 주입에 따른 연소배출특성 (Combustion Emission Characteristics on the Effect of Secondary Air Injection in Model Gas Turbine Combustor)

  • 김규성;임경달;이도형
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.84-89
    • /
    • 2000
  • The purpose of this study is to investigate the combustion emission characteristics by the effect of secondary air injection and variation of the excess air ratio in combustion field of model gas turbine combustor. For this purpose, mean temperature, CO, $CO_2$, $O_2$ and HC concentrations were measured by changing excess air ratio and secondary air injection. As a result of this study, mean temperature was decreased and CO, HC emission increased by increasing the excess air ratio of secondary air. Therefore, this results showed the secondary air injection effected strongly on the flame structure and combustion emission characteristics.

  • PDF

메탈파이버 버너의 예혼합 연소 및 화염급냉에 따른 NOx 배출 특성 (The Characteristics of NOx Emission for Premixed Combustion and Flame Rapid Cooling of MFB)

  • 김혁주;박병식;김종진;정해승
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.172-179
    • /
    • 2001
  • Experimental studies have been carried out to find out the characteristics of the heat transfer, combustion emission and noise in the boilers without any extra firing zone for complete combustion of fuel. For the experiments a burner of premixed type and some heat exchangers were designed and manufactured. Also test facilities including a data acquisition system and various measuring devices were set up in order to measure automatically the various temperatures and flow rates of water and combustion gas. Various experiments were performed to find out the heat transfer characteristics as well as combustion emission and noise. In general, the burner which has uniform holes in the burner nozzle plate generates big combustion noise . whistling. The noise reduction method is discussed in this study. Many experimental data such as noise level, the amount of pollutant emission and heat transfer rate for different combination of heat exchangers are given as comparison bases for numerical studies.

  • PDF

벽면으로 둘러싸인 제트 유동장에서의 마일드연소 및 오염물질 배출특성에 관한 전산해석 연구 (Computational Study of the Mild Combustion and Pollutant Emission Characteristics in Wall-confined Jet)

  • 송금미;오창보
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.263-266
    • /
    • 2012
  • The characteristics of mild combustion and pollutant emission were investigated computationally with supplied air stream temperature and dilution rate in jet flame. The air was diluted with main combustion products. As dilution rate increased at fixed air temperature, the temperature distribution of burner inside was uniformed and the maximum mole fraction of CO and NO was decreased. In addition, emission indices for NO, CO, and $CO_2$ were compared with air temperature and dilution rate.

  • PDF

The Influence of Fuel Spray Characteristics on the Engine Performance and Emission in the Direct Injection Type Diesel Engine

  • Bakar Rosli Abu;Lee Chang-Sik
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.43-50
    • /
    • 1997
  • The purpose of this investigation is to carry out, the influence factor on the fuel spray characteristics for improve the engine combustion performance and exhaust omission in direct injection type diesel engine. The fuel properties, fuel spray structure and the shape or the piston surface of diesel engine play an important role of engine combustion process and exhaust emission. In order to obtain the effect of using auxiliary chamber and emulsified fuel on the fuel spray characteristics the experiment un conduct with single cylinder direct injection type diesel engine to examine the engine performance and gas emission. The results of this investigation showed that the increase auxiliary chamber volume and emulsified fuel give an effect on the fuel spray characteristics by reduced the concentration of nitric oxide emission in the combustion chamber. Also it can improve the combustion characteristics such as cylinder pressure, rate of pressure rise and rate of heat release.

  • PDF

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.

동축선회 확산연소기의 1차 및 보조공기유량 변화에 따른 연소배출특성 (Combustion Characteristics in Various Primary and Auxiliary Air Flux Conditions at a Coaxial Swirling Diffusion Combustor)

  • 이용후;오세원;배대석;이도형
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.17-23
    • /
    • 2002
  • The purpose of this study is to investigate the combustion emission characteristics changing auxiliary air injection in combustion field of coaxial swirling diffusion combustor. For this purpose, mean temperature, CO, CO2, O2 and HC concentration were measured by changing excess air ratio and auxiliary air injection. As a result of this study, mean temperature, CO2 emission were increased and CO emission decreased by increasing auxiliary air. Therefore, this paper showed the auxiliary air injection effected strongly on flame structure and combustion emission characteristics.

  • PDF

가스터어빈용 촉매연소기를 위한 촉매-화염 복합 연소 특성연구 (Study on Characteristics of Catalytically Supported Thermal Combustion for Gas Turbine)

  • 이경원;정남조;유인수;조성준;강성규;전광민;송광섭
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.73-82
    • /
    • 2001
  • The characteristics of the catalytically supported thermal combustion with Pd-based catalyst using the bench scale high pressure combustor has been investigated up to 7 atm. The emission of $NO_{\chi}$ depends on the preheating temperature and the excess air ratio. Most $NO_{\chi}$ emission seems to come from the pre-burner for the preheating of the inlet gas. Decreasing excess air ratio in the inlet gas below 1.5 results in the stable catalytically supported thermal combustion in the post combustion region while the $NO_{\chi}$ emission increased up to 15 ppm. Further, the increase of the pressure shows the dramatic increase of the emission CO and THC. However, the $NO_{\chi}$ emission decreased slightly due to the lower combustion temperature at the high pressure.

  • PDF