• Title/Summary/Keyword: Combustion Vibration

Search Result 172, Processing Time 0.021 seconds

A Study on Homogeneous Mixture Supply in a Multi-Cylinder Spark Ignition Engine - Effect on Combustion Characteristics - (다기통 전기점화기관의 균질혼합기 공급에 관한 연구 - 연소특성에 미치는 영향 -)

  • 김물시;이용길;박경석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2194-2200
    • /
    • 1994
  • In an automotive spark ignition engine, it is important to form the proper mixture (air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel si attached on the inside wall of the intake manifold for unadequate nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in the intake manifold on combustion characteristics and engine performance.

Effect of Non-Uniform Mixture on the 4 Cylinder S.I.Engine Performance (4기통 전기점화기관의 혼합기 불균일화가 기관성능에 미치는 영향)

  • 김물시;진성호;박경석;이용길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.72-79
    • /
    • 1994
  • In an automotive spark ignition, it is important to form the proper mixture(air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel is attached on the inside wall of the intake manifold for unadequate atomization by fuel injection system, it brings a bad effect on combustion and exhaust caused by nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in an intake manifold on combustion characteristics and engine performance.

  • PDF

An Experimental Study of the Effects of Water Vapor in Intake Air on Comvustion and knock Characteristics in a Spark Ignition Engine (흡기중 수증기 함량이 스파크 점화기관의 연소 및 노킹에 미치는 영향에 관한 실험적 연구)

  • 이택헌;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.205-212
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air on combustion efficiency, general performance, knock characteristics and emission gas concentration were investig- ated through the experiments of combustion and vibration analyses, emission gas analysis by changing water vapor quantity in inlet air with temperature and humidity auto control unit. With partial vapor pressure increase, the brake torque at wide open throttle status decreased and the average ignition delay angle increased, IMEP (indicated mean effective pressured using the integral and 3rd derivatives of filtered cylinder pressure as knock intensity, which matched well with the method of frequency power spectrum of block vibration signal. Water vapor in intake air had influence on the spark knock sensitivity. With the increase of water vapor content in intake air NOx emission was decreased and HC emission was increased.

  • PDF

A study on development of plastic intake manifold module (Plastic 흡기 매니폴드 모듈 개발에 관한 연구)

  • Lee, Jeong-Kyun;Kim, Young-Bok;Joo, Kyung-Jei
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.833-838
    • /
    • 2011
  • Future powertrain technologies will be developed focused on applications of eco-friendly technology for internal combustion engine, electric vehicle and Fuel Cell Electric Vehicle. But it is expected that these cutting edge technologies will not be applied immediately due to lack of infrastructure, technical and economical reasons. Therefore, numerous developments of internal combustion engine will be carried out for the time being. There have been many turbo engine developments undergoing to maximize the engine performance using turbo charger system in accordance with global trend-green technology and downsizing of engine which coincides with HMC's future development strategy. This study reviews the development process and result of plastic intake manifold module which is firstly developed for turbo engine. CAE simulation and experiments were implanted to evaluate design validity.

  • PDF

Characteristics of Thermoacoustic Oscillation in Ducted Flame Burner (관형 연소기의 열음향학적 특성에 관한 연구)

  • 조상연;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.621-626
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat additions is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. In addition, the effect of wall temperature is presented. The results suggest that the frequency of max. oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters. On the other hand, the wall temperature distribution has much strong effects on the oscillation, even creates different mode of acoustic resonance.

  • PDF

Dynamic Deformation Analysis of Cylinder Bore considering Forced Vibration (강제 진동을 고려한 실린더 보어의 동적 변형 해석)

  • 윤성호;조덕형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.174-181
    • /
    • 2002
  • Dynamic deformation of the cylinder bore during actual engine operation has an important effect on the combustion gas sealing, oil consumption, friction and so on. The dynamic analysis using the finite element method is performed to investigate the dynamic deformation of the cylinder bore subjected to forced vibration under excitation of the combustion gas pressure. However, this analysis requires large computer memory and tremendous solving time. The pseudo-static analysis can be an alternative to the dynamic analysis at the expense of accuracy. Dynamic analysis and static analysis results are presented for both closed-deck block and open-deck block that are respectively combined with the cylinder block, cylinder head, transmission, and oil pan.

A Study on the Mixing Characteristics of Solid in Vibrating Feeder for Stable Operations of Fluidized Bed Combustion (유동층 연소로 안전조업을 위한 진동 공급기내의 고체입자 혼합특성에 관한 연구)

  • 김미영;조병렬;박상찬;이동규;김의식
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.112-118
    • /
    • 1998
  • This work has been carried out to study the mixing characteristics of solid in vibrating feeder for stable operations of fluidized bed combustion. The system consisted of two particles such that fine particles were located on the top of the coarse particles before vibratory mixing had started. Effect of particle size, particle densities, vibration amplitude and vibration frequency were experimentally obtained. Also, a diffusion model was applied in interpreting the experimental results. From these results, the following empirical equation for the diffusivity was obtained. $0.87{(\frac{d_c}{d_f})}^{0.73}\;{(\frac{\rho_f}{\rho_c})}^{0.53}(A^2f)$.

  • PDF

An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine (선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

A Study on the Torsional Vibration Damper of the Small Internal Combustion Engine Driving System(Part I) - Development of the Optimum Viscous-Rubber Damper- (소형내연기관축계의 비틀림진동댐퍼에 관한 연구 제1보 최적점성.고무탄성댐퍼의 개발)

  • 전효중;김유종;김의간;김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.44-52
    • /
    • 1991
  • The crankshaft system of engine is a complex vibratory object and its vibration modes are consisted of torsional, axial and their coupled vibration. Among them, the torsional vibration causes engine noise as well as serious fatigue faillures of crankshaft. If the troules of noises and crankshaft strength are forecasted by torsional vibration calculation in the design atage of crankshaft, the torsional damper is adopted as the final countermeasure. In this paper, some computer program to calculate crankshaft torsional vibration of engine are developed and with developed programs, an efficient rubber-viscous damper for automobile and with developed programs, an efficient rubber-viscous damper for automobile engine is designed and manufactured, and then it is fitted on the actual automobile engine to confirm its calculated efficiency. By comparing the measured result (with damper and without damper) with the calculated one, the reliability of developed computer programs and the performances of manufactured damper are confirmed.

  • PDF

Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain (주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석)

  • Kim, S.H.;Lee, D.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF