• 제목/요약/키워드: Combustion Response Function

검색결과 35건 처리시간 0.019초

다이오드 레이저를 이용한 연소진단기법 (Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy)

  • 차학주;김민수;신명철;김세원;김혁주;한재원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF

고체추진제의 연소불안정특성 측정방법에 대한 연구 (A Study on Determining Method of Combustion Instability Characteristics of Solid Propellants)

  • 윤재건;유지창;이정권
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1081-1086
    • /
    • 1994
  • The phenomena called "combustion instabilities" in a solid-propellant rocket motor may be viewed as sustaining or amplifying pressure waves. Energy is supplied by combustion processes near the surface of the burning propellant. T-burner method is used to determine the response function of the propellant to the pressure wave. But initial tests were failed because of the Helmholtz resonation inside the T-burner. Acoustic analysis of the original T-burner is carried out and suppression techniques for the Helmholtz oscillation are introduced.ntroduced.

Pulsed DB/AB T-Burner에 의한 고체추진제 연소응답함수 측정 (Pulsed DB/AB T-Burner Test for Measurement of Combustion Response Function of Solid Propellants)

  • 임지환;박병훈;이길용;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.255-263
    • /
    • 2006
  • In order to measure the acoustic amplification factor of an Al/HTPB propellant, T-burner tests using pulsed DB/AB method were conducted. In the experiment, powdered aluminum content was varied to a certain extent. Simultaneous ignition on the internal surface of a propellant was achieved by the use of a fast ignition disk. From the experimental data, the damping factor for a non-zero aluminum content could not be calculated due to the fast attenuation of perturbed pressure. Therefore, the addition of aluminum particle was more than sufficient to stabilize pressure-coupled instability.

  • PDF

Pulsed DB/AB T-Burner Test for Measurement of Combustion Response Function of Solid Propellants

  • Lim, Jih-Wan;Yoon, Woong-Sup;Yoo, Ji-Chang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.431-436
    • /
    • 2008
  • T-burner tests of an Al/HTPB propellant in conjunction with a Pulsed DB/AB Method were conducted to find an acoustic amplification factor. Aluminum-free and aluminum-heavy propellants were examined. Instant surface ignition was successfully made by the use of a supplementary propellant of fractionally higher reaction rate. With the presence of higher aluminum concentration in the propellants, the pressure perturbations were promptly damped down and the pressure fluctuations were no longer dispersive. Addition of aluminum particles into the propellant was advantageous for stabilizing pressure-coupled unstable waves.

  • PDF

CFD를 이용한 희박 예혼합 연소기에서의 연소 응답 모델링 (Flame Response Modeling for Lean Premixed Combustors Using CFD)

  • 김대식;이정원
    • 대한기계학회논문집B
    • /
    • 제38권9호
    • /
    • pp.773-779
    • /
    • 2014
  • 가스터빈 희박 예혼합 연소기에서 발생하는 연소 불안정 현상을 모델링하기 위해서는 화염의 동 특성에 대한 정량적, 정성적 분석이 필수적이다. 이를 위하여 화염전달함수가 전산유체역학을 통하여 모델링되었다. 기존 화염전달함수의 연구 결과로부터, 화염전달함수의 결과는 화염의 구조에 크게 의존하는 것으로 알려졌다. 본 연구에서는 실제 계측된 화염의 구조와 유사한 형상을 갖도록 열전달 조건을 최적화한 후, 동일 조건에서 화염전달함수가 모델링되었다. 화염의 형상을 정확하게 예측할 수 있다면, 이로부터 전달함수의 이득값과 위상차의 모델링 결과 역시 실험값과 유사한 거동을 확인할 수 있었다.

당량비 및 섭동 조건 변화가 화염 전달 함수에 미치는 영향 (Effects of Changes in Equivalence Ratio and Modulation Condition on Flame Transfer Function)

  • 김대식
    • 한국추진공학회지
    • /
    • 제15권4호
    • /
    • pp.35-40
    • /
    • 2011
  • 희박 예혼합 가스터빈에서 발생되는 연소 불안정 현상의 메커니즘을 규명하기 위하여 입구 속도 변동에 대한 열발생 변동을 정량화한 화염 전달 함수가 실험적으로 규현되었다. 이를 위하여 실제 가스터빈과 유사한 형태를 갖는 모형 연소기가 제작되었으며, 열발생율의 측정을 위한 가시화 연소기가 장착되었다. 또한 흡기 속도의 변조를 위하여 가변 속도 모터 및 유량 제어 장치가 설계되었고, 이러한 장치들을 통하여 입구 속도 변동이 열발생율의 진폭에 미치는 영향 및 화염 구조의 변화를 실험적으로 계측하였다. 실험 결과 화염 전달 함수는 당량비와 같은 운전 조건과 더불어 속도 섭동 조건에 대하여도 크게 의존하며, 화염의 길이와 섭동파 파장의 비율을 의미하는 Strouhal 수에 의하여 일반화될 수 있었다.

반응표면법을 이용한 석탄 화력 보일러 연소특성 예측 (Prediction of the Combustion Performance in the Coal-fired Boiler using Response Surface Method)

  • 신성우;김신우;이의주
    • 한국안전학회지
    • /
    • 제32권1호
    • /
    • pp.27-32
    • /
    • 2017
  • The experimental design methodology was applied in the real scale coal-fired boiler to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was provided with the numerical simulation of the coal-fired boiler. The three independent variables, high heating value of coal (HHV), overall stoichiometry excess air ratio (OST), and burner-side stoichiometry excess air ratio (BST), were set to characterize the cross section averaged NOx concentration and temperature distribution. The maximum NOx concentration was predicted accurately and mainly controlled by BST in the boiler. The parabola function was assumed for the zone averaged peak temperature distribution, and the prediction was in a fairly good agreement with the experiments except downstream. Also, the location of the peak temperature was compared with that of maximum NOx, which implies that thermal NOx formation is the main mechanism in the coal-fired boiler. These results promise the wide use of statistical models for the fast prediction and safety assessment.

반응표면법을 이용한 DTF의 석탄 연소 안전성 평가 (Assessment of Coal Combustion Safety of DTF using Response Surface Method)

  • 이의주
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

정량적 위험성평가를 위한 배출 오염물질 분포 예측 (Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment)

  • 이의주
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.