• Title/Summary/Keyword: Combustion Property

Search Result 177, Processing Time 0.024 seconds

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

Stabilization Characteristics of Upgraded Coal using Palm Acid Oil

  • Rifella, Archi;Chun, Dong Hyuk;Kim, Sang Do;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • These days, coal is one of the most important energy resources used for transportation, industry, and electricity. There are two types of coal: high-rank and low-rank. Low-rank coal has a low calorific value and contains large amounts of useless moisture. The quality of low-rank coal can be increased by simple drying technology and it needs to be stabilized by hydrocarbons (e.g. palm acid oil, PAO) to prevent spontaneous combustion and moisture re-adsorption. Spontaneous combustion becomes a major problem during coal mining, storage, and transportation. It can involve the loss of life, property, and economic value; reduce the quality of the coal; and increase greenhouse gas emissions. Besides spontaneous combustion, moisture re-adsorption also leads to a decrease in quality of the coal due to its lower heating value. In this work, PAO was used for additive to stabilize the upgraded coal. The objectives of the experiments were to determine the stabilization characteristic of coal by analyzing the behavior of upgraded coal by drying and PAO addition regarding crossing-point temperature of coal, the moisture behavior of briquette coal, and thermal decomposition behavior of coal.

A Study on the Method of Gain Setting of Digital Governor by Dynamic Calculation for Marine Prime Movers (선박 주기관 디지털 거버너의 동적 게인 설정법에 관한 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.251-259
    • /
    • 2002
  • The design concept of diesel engines for sea-going ships has been directed to Low-speed/Long-Stroke type to improve the efficiencies of combustion and propelling. But the time-delay property inevitable at such low speed engines gives much difficulties for governors to control the engine speed because they would be apt to go into unstable region especially when operating at low speed. The purpose of this paper is to study the problem of how the governor gain can be calculated dynamically in accordance with the variance of engine speed at least for an engine to be stable. In this study, the property of diesel engine was described as composed of combustion element including dead time and rotating element, and the ultimate gain for the speed control system to be located on the condition of stability limit was proposed based on the frequency characteristics. And the target gains with optimized stability also were proposed by giving proper margin to these ultimate conditions. The results were applied to a model system and the availability was confirmed to be satisfactory.

  • PDF

A Study on Properties of HTPB/AP/Al Propellant to Contents of Bonding Agents (결합제 함량에 따른 HTPB/AP/Al 추진제의 특성 연구)

  • Lee, Youngwoo;Ha, Sura;Jang, Myungwook;Kim, Taekyu;Lee, Jungjoon;Son, Hyunil
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • The propellant tile and crack which account for the greatest proportion of solid rockets are profoundly affected by viscosity and mechanical properties of solid propellant. In this paper HTPB/AP/Al system propellant has been researched for the viscosity, mechanical properties and burning properties with type and contents of bonding agents. The viscosity of propellant was changed significantly depending on the type and contents of bonding agents, and mechanical properties of HTPB/AP/Al system propellant were also varied. Considering both lower viscosity and stable mechanical properties, the optimum type and contents of bonding agents can be identified as the main factors to the HTPB/AP/Al system propellant.

Prediction for Heat Transfer Characteristics of Supercritical Kerosene Using Mixture Surrogate (대체 혼합물을 이용한 케로신의 초임계 열전달 특성 예측)

  • Lee, Sanghoon;Yang, Inyoung;Park, Boo-min;Lee, Jinhee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.294-296
    • /
    • 2017
  • In this study heat transfer characteristics of kerosene at supercritical condition was predicted. And a sample heat transfer calculation was performed using this result. The prediction was done by assuming kerosene as a mixture of a number of pure substances, and combining the thermodynamic properties of them, using NIST SUPERTRAPP. A regeneratively cooled supersonic combustor will be desinged using the resultant thermophysical property data of supercritical kerosene. Comparing with the combustion test results of the regenerative cooling combustor, the predicted thermophysical property data will be verified.

  • PDF

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • 서성현;최환석;한영민;김성구
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.56-60
    • /
    • 2006
  • It is essential to predict thermodynamic properties of combustion gas with respect to a propellant mixture ratio for the development of a gas generator for a liquid rocket engine. The present study shows the temperature measurement of exit combustion gas as a function of a mixture ratio through the series of combustion tests of a fuel-rich gas generator with liquid oxygen and Jet A-1. The measurements of dynamic and static pressures, and combustion gas temperatures allowed the estimation of thermodynamic properties like a specific heat ratio, a gas constant, and a constant pressure specific heat of the combustion gas. The comparison of the experimental results with predictions made by interpolation parameters obtained from the modification of the chemical equilibrium code indicates that the interpolation method calibrated using the temperature measurements can be utilized as an effective tool for the initial design of a fuel-rich gas generator.

Influence of Radiant Heat Flux on Combustion Properties of Flame Retardant Cable (케이블의 난연성능에 따른 복사 열유속이 연소물성에 미치는 영향)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2019
  • The combustion properties required for fire simulations of multi-layer, multi-component flame retardant cables were measured using a cone calorimeter. The CO and soot yields combustion efficiencies of the flame retardant cables were investigated. TFR-8 (flame retardant PCV and XLPE added), TFR-CVV-SB (flame retardant PCV and general PVC), and VCTF, which are excellent in the flame retardancy of cables, were considered. As the main result, the CO yield (yCO) of the TFR-8 and TFR-CVV-SB flame retardant cables increased by 23% and 16%, respectively, with increasing incident radiation heat flux from 25 kW/㎡ to 50 kW/㎡. On the other hand, the CO yield of VCTF was not influenced significantly by the changes in radiant heat flux. Finally, the soot yield and combustion efficiency increased as the sheath material (flame retardant performance) was strengthened. Therefore, in a fire environment where various heat fluxes coexist, attention should be paid to the top of the application of the combustion property of the flame retardant cable.

Solution Combustion Synthesis of LaFeO3 Powders and Their Carbon Ignition Property (용액연소합성법을 이용한 LaFeO3 분말 합성 및 탄소 연소 특성)

  • Rang, Da-Sik;Lee, Tae-Kun;Hwang, Yeon;Bae, Kwang-Hyun;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.382-385
    • /
    • 2007
  • [ $LaFeO_3$ ] powders were prepared as the oxidation catalyst materials to reduce the emission of particulate matters from diesel engine and their catalytic effects on the oxidation of carbon were investigated. Solution combustion method was employed for the powder synthesis, which uses highly exothermic and selfsustaining reactions. In this study $LaFeO_3$ powders were synthesized at $400^{\circ}C$ as varying the ratio ($\Phi$) of fuel (citric acid) and oxidizer (metal nitrate), and their phase and carbon ignition property were examined. As $\Phi$ decreases, the crystallinity of synthesized $LaFeO_3$ powders enhanced. By calcining at $700^{\circ}C$, all the powders synthesized at various $\Phi$ fully crystallized. The calcined $LaFeO_3$ powders showed carbon ignition temperature as low as $501{\sim}530^{\circ}C$, which implied the decrease of the ignition temperature by $120{\sim}150^{\circ}C$.