• Title/Summary/Keyword: Combustion Emission

Search Result 1,508, Processing Time 0.027 seconds

Influence of Changing Combustor Pressure on Combustion Characteristics and Reaction Zone in the Partially Premixed Flame with $CH_4$, $C_2H_4$ and $C_3H_8$ (부분 예혼합 화염에서 연소실 압력이 연료별($CH_4$, $C_2H_4$, $C_3H_8$) 연소특성과 반응영역에 미치는 영향)

  • Son, Je-Ha;Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.33-40
    • /
    • 2011
  • Combustion experiments were conducted at three different fuels ($CH_4$, $C_2H_4$ and $C_3H_8$) to investigate the effects of combustor pressure (30 ~ -30 kPa) on combustion charateristics and reaction zone structure. Regardless of the fuels, emission index of CO (EICO) increased with decreasing combustor pressure, and EICO of $C_2H_4$ was mostly affected by changing combustor pressure at subatmospheric pressure. In order to observe reaction zone, $OH^*$, $CH^*$ and ${C_2}^*$ chemiluminescence intensity were measured. The sequence of the chemiluminescence intensity peak position was affected by chemical characteristics of fuels rather than changing combustor pressure. The emission zone thickness of $C_2H_4$ and $C_3H_8$, defined by the full width at half maximum (FWHM) of $CH^*$ intensity profile, were increased with decreasing combustor pressure. however, the thickness of $C_2H_4$ exhibited the opposite tendency due to the characteristics of the fuel as the bond structure.

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

A Preliminary Experimental Study on the Development of Oxy-Fuel Combustion Heating System with $CO_2$ Recycle ($CO_2$ 재순환형 산소연소 가열시스템개발에 관한 실험적 연구)

  • Lee, Eun-Kyung;Go, Chang-Bok;Jang, Byung-Lok;Han, Hyung-Kee;Noh, Dong-Soon;Jeong, Yu-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.69-74
    • /
    • 2006
  • An Experimental study was conducted on $CO_2$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_2$ and water vapor($H_2O$) and resulting in higher $CO_2$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_2$. but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_2$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_2$ concentration in the flue gas was about 80% without $CO_2$ recycle, but increased to $90{\sim}95%$ with $CO_2$ recycle. The furnace temperature and pressure was decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF

A Study on the Reduction of Particulate Emission Using Oil Soluble Organometallic Compounds as Combustion Improver for Heavy Fuel Oil (중질유 연소시 유용성 유기금속화합물 연소촉진제의 Dust 저감특성)

  • Kim, Dong-Chan;Nho, Nam-Sun;Woo, Je-Kyung;Kim, Jin-Hoon;Lee, Young-Sea
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2008
  • This study is aimed at substantially reducing the particulate matter (dust) emission during the combustion of heavy fuel in boilers by addition of combustion improver. The combustion improver used were the oil-soluble organometallic compounds that were found to be more effective than the dispersing agents that are generally used for reducing the particulate emission. The dust reduction effect was found to depend on the active materials (metals) as well as on the organic ligand part of organometallic compounds. Acetylacetonoate and naphthenate of Fe and Ca were found to be most effective for dust reduction. Addition of Fe and Ca organometallic compounds as combustion improver in concentration of 30 ppm (metal basis) to heavy fuel oil, caused dust reduction by 50 wt% to 80 wt%.

Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas (합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선)

  • Park, Hyunwook;Lee, Junsun;Jamsran, Narankhuu;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.

An Experimental Study of Cyclic Combustion Characteristics at Starting and Idling Phase on Spark Ignition Engine (SI 엔진의 시동 및 아이들 구간에서의 점화시기에 따른 싸이클별 연소현상에 관한 실험적 연구)

  • Choi, Seong-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3317-3322
    • /
    • 2007
  • THC(Total Hydrocarbon) emissions during cold start and warm-up phase constitute the majority of THC emissions during the FTP-75 mode. As the basic approach to improve the emission performance of Gasoline engine during transient phase, the effect of spark timing retard from MBT on THC emission characteristics is studied by engine test using a Fast response Flame Ionization Detector(FFID). A cyclic analysis of the combustion process shows that high THC emissions are produced first few cycles during the transient phase. This paper presents the results of engine performance and emission of Gasoline engine with various spark timing. consequently, This paper was focused on the combustion phenomena with various spark timing during transient phase which was analyzed by Fast response Flame Ionization Detector (FFID) equipment to measure the cyclic THC emission characteristics.

  • PDF

The Impact of Ethanol Contents on Combustion Performance and Nano-particle Emission Characteristics from Spark Ignition Direct Injection (SIDI) Engine (에탄올 함량비가 SIDI 엔진의 연소성능과 입자상물질 배출특성에 미치는 영향에 대한 연구)

  • Cho, Jaeho;Myung, Cha-Lee;Park, Simsoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.343-344
    • /
    • 2014
  • Ethanol as fuel of Spark Ignition Direct Injection (SIDI) engine has become a feasible alternative due to its better anti-knock characteristics and lower nano-particle emission level. There are a number of studies on the emission characteristics from SIDI engine fuelled with various ethanol contents. In general, increase of ethanol contents leaded to decrease of nano-particle discharge, but the other researches showed reversed result at a singular range of ethanol contents. This study focused on the engine combustion performance and nano-particle emission characteristics of SIDI engine fuelled with intermediate ethanol contents.

  • PDF

A Numerical Analysis of the NO Emission Characteristics in $CH_4/Air$ Counterflow Premix Flame (메탄/공기 대향류 예혼합화염의 NO 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2004
  • Lean premix combustion is a best method in low $NO_x$ gas turbine combustor and we must know the characteristics of NO emission in high temperature and pressure condition in premix flame. Numerical analysis was performed to investigate the NO emission characteristics by adopting a counterflow as a model problem using detailed chemical kinetics. Methane $(CH_4)$ was used as a test fuel which is the main fuel of natural gas. The tested parameters were stretch rate, equivalence ratio, initial temperature, and pressure in premix flame. Results showed that NO emission was high in low stretch rate, near stoichiometric equivalence ratio, high initial temperature, and high pressure. Also, the pressure effect was sensitive in high temperature condition.

  • PDF

Effects of Oxidizer Inlet Velocity on NO Emission characteristics of 0.2MW Oxy-Fuel Combustor (산화제 입구 속도에 따른 0.2MW 순산소 연소기의 NO 배출 특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.63-68
    • /
    • 2006
  • Effects of oxidizer inlet velocity on NO emission characteristics of 0.2MW oxy-fuel combustor have been experimentally investigated. The NO formation process in the oxy-fuel combustion is extremely sensitive even for the small fraction of nitrogen in oxidizer. By increasing the oxidizer velocity, flame length is reduced due to the enhanced turbulent mixing. The increased oxidizer velocity also results in the decreased flame temperature through the elevated entrainment rate of the recirculated product and the corresponding NO emission is drastically decreased. Experimental results clearly indicate that the entrained product gases play a crucial role to decrease the temperature at the flame zone and the post flame zone where the thermal NO is mainly formed.

  • PDF