• Title/Summary/Keyword: Combustion Analyzer

Search Result 150, Processing Time 0.022 seconds

An Experimental Investigation into the Characteristics of Sampling Module for East-Response Co2 Concentration Analyzer with NDIR (비분산 적외선 분광법을 이용한 Co2농도 고속 분석기의 Sampling Module 특성에 관한 실험적 연구)

  • Kim, Woo-Seok;Shon, Deok-Young;Park, Young-Moo;Yoo, Jae-Suk;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.398-405
    • /
    • 2003
  • A fast response analyzer for measuring carbon dioxide concentration has been developed for transient characteristic and researches tested on internal combustion engine. The analyzer uses the well known NDIR(Non-Dispersive Infrared) method with miniaturized detection system, giving a time constant of approximately 30 microsecond, and sampling module consists of capillary tube. Since the transit time and the time constant of the sampling system depend on the sampling conditions, it is necessary to investigate the characteristics of sampling system before applied to exhaust gas measurement in engine. A unique method was designed to study the influence of the diameter of transfer sample line and operating conditions of the FRNDIR on transit time and time constant. A database of transit time and time constant was built up for different measured and simulated pressure conditions. The database can be used for correcting eventual $CO_2$ concentration measurement.

A Study on the Fire Characterization of Foam block using Cone-calorimeter and FTIR (콘칼로리미터와 적외선분광계(FTIR)를 이용한 폼블럭의 연소특성에 대한 실험적 연구)

  • Han, Bong-Hoon;Seo, Dong-Ho;Kwon, Young-Hee;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.23-32
    • /
    • 2017
  • Foam block, popularized as the self-interior goods, is susceptible to fire since the main material is the polyethylene flammable synthetic resin. However, it is widely used in homes, offices, and multi-use facilities. In order to understand the fire characteristics of the foam block, two kinds of foam blocks sold in the market (non-fire retardant and fire retardant) were evaluated according to standard of KS F 5660-1 (Reaction to fire test). In addition, the hazard analysis of the gas generated by the combustion of the specimen was performed using the FTIR gas analyzer. The cone calorimeter test showed that the ignition and flame combustion of both two specimens were burned as soon as the radiant heat blocking device was removed, and it was confirmed that the flame could become a rapid propagation factor during the fire. The analysis of the combustion gas through the FTIR gas analyzer showed that both the carbon dioxide and carbon monoxide classified as the common combustion gases and the acrolein, ammonia, and hydrogen cyanide causing serious damage to the human body were detected substantially. This study showed that a foam block product has high ignitionability and generates toxic gases. Hence, it is urgently required to establish the standards used for properly classifying the combustion characteristics of the material on the basis of the use conditions of a foam block product and to prepare the standards on the purpose of use.

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

Study of Oil Palm Biomass Resources (Part 1) - Characteristics of Thermal Decomposition of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 I - 오일팜 바이오매스의 열분해 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Sim, Sung-Woong;Lee, Gyeong-Sun;Cho, In-Jun;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFP) and palm kernel shell (PKS) was used as raw materials for making pellets. EFB and PKS are valuable lignocellulosic biomass that can be used for various purposes. If EFB and PKS are used as alternative raw materials for making pellets instead of wood, wood could be saved for making pulps or other value-added products. In order to explore their combustion characteristics, EFB and PKS were analyzed using thermal gravimetric analyzer (TGA) with ultimate and proximate analyses. From the TGA results, thermal decomposition of EFB and PKS occurred in the range of 280 to $400^{\circ}C$ through devolatilization and combustion of fixed carbon. After $400^{\circ}C$, their combustion were stabilized with combustion of residual lignin and char. PKS contained more fixed carbons and less ash contents than EFB, which indicated that PKS could be more active in combustion than EFB.

Improvement of combustion efficiency for marine auxiliary diesel engine (선박발전기용 디젤엔진의 연소효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.233-239
    • /
    • 2014
  • The accurate engine output is basically one of important factors for the analysis of engine performance. Nowadays in-cylinder pressure analyzer in internal combustion engine is also an indispensable tool for engine research and development, environment regulation and maintenance of engine. The combustion analysis is desperately needed in order to induce a correct judgment on the condition of the engine and suggest the specific ways to improvement as well as the correct engine output. And these tool is advantageous to reduce fuel consumption and maintenance of the engine. In this study, using the developed measuring kit, combustion analysis of marine generator engine which was adapted as test engine was carried out. It was verified that the good operation condition of the engine as well as contributing to fuel savings by checking and readjusting accurately the irregular combustion of the test engine were accomplished. From the results all above, it was recognized that the measuring kit by new method for engine output was developed and verified for its utilities.

An Experimental Study on the Combustion and Emission Characteristics of Hydrogen Enriched LPG Fuel in a Constant Volume Chamber (정적연소기내 H2-LPG 연료의 혼합 비율에 따른 연소 및 배출가스 특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Kim, Ki-Jong;Ko, Dong-Kyun;Yoon, Yu-Bin;Cho, Yong-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in constant volume chamber. An experimental study was carried out to obtain fundamental data for the combustion and emission characteristics of pre-mixed hydrogen and LPG in a constant volume chamber (CVC) with various fractions of hydrogen-LPG blends. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. Exhaust emissions were measured using a HORIBA exhaust gas analyzer for various fractions of hydrogen-LPG blends. The results showed that the rapid combustion duration was shortened, and the rate of heat release elevated as the hydrogen fraction in the fuel blend was increased. Moreover, the maximum rate of pressure rise also increased. These phenomena were attributed to the burning velocity which increased exponentially with the increased hydrogen fraction in the $H_2$-LPG fuel blend. Exhaust HC and $CO_2$ concentrations decreased, while NOX emission increased with an increase in the hydrogen fraction in the fuel blend. Our results could facilitate the application of hydrogen and LPG as a fuel in the current fossil hydrocarbon-based economy and the strict emission regulations in internal combustion engines.

A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant (열병합 발전소용 목질계 바이오매스의 연소 특성에 관한 연구)

  • Ryu, Jeong-Seok;Kim, Ki-Seok;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.296-300
    • /
    • 2011
  • In this work, various wood biomasses were used to determine the combustion characteristics for the fuel of cogeneration plant. Combustion characteristics of four types, i.e., (i) forest products, (ii) recycled wood, (iii) empty fruit bunch, and (iv) palm kernel shell, were examined via thermal gravimetric analyzer (TGA) in air atmosphere and coal was used as a comparison group. From the TGA results, the combustion of the wood biomass was occurred in the range of 280 to $420^{\circ}C$, which was lower than that of coal. Forest product showed the lowest activation energy (0.4 kJ/mol) compared to that of other wood biomasses (about 6 to 14 kJ/mol) and coal (64 kJ/mol). In addition, the reaction rate constant of the wood biomass was lower than that of coal. These results indicate the higher combustion initiation rate of wood biomass due to the high content of volatile matter, which had a low boiling point.

Compare Efficiency and Characteristics according to the WGT and VGT Application on the Off-road Engines (Off-road 엔진에서 WGT와 VGT장착에 따른 효율 및 특성 비교)

  • Shin, Jaesik;kang, Jungho;Ha, Hyeongsoo;Jung, Haksup;Pyo, Sukang
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • The aim of this study is to compare the effectiveness of turbo chargers on engines for off-road use when combined with WGT and VGT technologies. The effectiveness of turbo chargers was measured and performance was compared using a functional model. Exhaust characteristics were compared using WGT and VGT technologies through a gas analyzer. Results showed VGT technology was more effective at high RPM compared to WGT technology. When it came to maximising turbo performance, VGT was more effective than WGT in every test. WGT and VGT produced similar exhaust NOx levels, whereas the VGT was more effective on the PM.

Experimental Study on the Spray Behavior of Non-Esterification Biodiesel Fuel (비에스테르화 바이오디젤유의 분무거동에 대한 실험적 연구)

  • Choi, S.H.;Oh, Y.T.
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.117-121
    • /
    • 2009
  • Biodiesel fuel has different spray patterns, because viscosity and surface tension of biodiesel fuel are higher than that of diesel fuel. The diesel combustion is strongly controlled by the fuel spray behavior in combustion chamber. So, it was needed to understand the spay characteristics of non-esterification biodiesel fuel. In this study, the spray characteristics of non-esterification biodiesel fuel was investigated to confirm of an effect of WDP. The characteristics of fuel atomization was analyzed with SMD and span factor through laser diffraction particle analyzer (LDPA), and the process of spray injection was visualized through the visualization system composed of a halogen lamp and high speed camera. It was found that injection delay time and SMD of blended fuel with WDP get shoter and smaller than that of non-esterification biodiesel fuel.

  • PDF

The Flame Characteristics of Annular Combustor for Gas Turbine according to Combustor Length Ratio (가스터빈용 환형연소기의 연소실 길이비에 따른 화염특성)

  • Kim, Jaeyeong;Lee, Dongwon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.127-130
    • /
    • 2015
  • The objective of this study is to investigate the real flame shape and characteristic of annular combustor. To identify the effects of combustor length ratio and equivalence ratio on the flame shape in annular combustion configuration, the employed parameters are combustor length ratio 0.6-1.0, equivalence ratio 0.7-1.1. The flame shape is visualized using DSLR camera and precision optic mirror. The flame intensity is analyzed by $OH^{*}$ chemiluminescence images with ICCD camera. CO and NOx emission performance is also examined using an exhaust gas analyzer. From the visualized images, it is confirmed that the different tendency appeared in combustor length ratio 0.6-0.7 and 0.8-1.0. The results of $OH^{*}$ chemiluminescence show that the flame intensity is the most uniform for equivalence ratio 0.9. The smaller equivalence ratio is, the less emission of CO and NOx will be in this investigation range.

  • PDF